Updates in Left Atrial Appendage Occlusion

Ashish Rastogi, MD

Medical Director of Structural Heart Owensboro Health Regional Hospital

Disclosures

I have no relevant disclosures related to this presentation

The official journal of the Society for Cardiovascular Angiography & Interventions

Standards and Guidelines

SCAI/HRS Expert Consensus Statement on Transcatheter Left Atrial Appendage Closure

Jacqueline Saw, MD, FSCAI, Chair^{a,*}, David R. Holmes, MD, FSCAI, (Vice-Chair)^b, João L. Cavalcante, MD^c, James V. Freeman, MD, MPH, MS^d, Andrew M. Goldsweig, MD, MS, FSCAI^e, Clifford J. Kavinsky, MD, PhD, MSCAI^f, Issam D. Moussa, MD, MBA, FSCAI^g, Thomas M. Munger, MD^b, Matthew J. Price, MD, FSCAI^h, Mark Reisman, MD, FSCAIⁱ, Matthew William Sherwood, MD, MHS, FSCAI^j, Zoltan G. Turi, MD, MSCAI^k, Dee Dee Wang, MD, FSCAI^l, Brian K. Whisenant, MD, FSCAI^m

^a Division of Cardiology, Vancouver General Hospital, University of British Columbia, Canada; ^b Department of Cardiovascular Medicine, Mayo Clinic Health System Rochester, Rochester, Minnesota; ^c Department of Cardiology, Minneapolis Heart Institute, Minneapolis, Minnesota; ^d Section of Cardiovascular Medicine, Yale University, New Haven, Connecticut; ^e Division of Cardiovascular Medicine, The University of Nebraska Medical Center, Omaha, Nebraska; ^f Division of Cardiovascular Medicine, Rush University, Chicago, Illinois; ^g Carle Heart and Vascular Institute, Carle Illinois College of Medicine, Urbana, Illinois; ^h Division of Cardiovascular Diseases, Scripps Green Hospital, La Jolla, California; ⁱ Division of Cardiology, Weill Cornell Medical Center, New York, New York; ^j Division of Cardiology, Inova Heart and Vascular Institute, Fairfax, Virginia; ^k Center for Structural and Congenital Heart Disease, Hackensack University Medical Center, Hackensack, New Jersey; ^l Center for Structural Heart Disease, Henry Ford Health System, Detroit, Michigan; ^m Division of Cardiology, Intermountain Medical Center, Murray, Utah

Endorsement: This statement was endorsed by the American College of Cardiology and the Society of Cardiovascular Computed Tomography.

Outline

600 PEOPLE IN THE U.S. ARE AFFECTED BY ATRIAL FIBRILLATIO

12M THE NUMBER OF PEOPLE AFFECTED BY ATRIAL FIBRILLATION IS PREDICTED TO DOUBLE BY 2035.

5X 2000000

GREATER RISK OF STROKE FOR ATRIAL FIBRILLATION PATIENTS

47% of AF patients experiencing a stroke will **suffer a second stroke** within 6 months⁴

Benjamin, EJ et al., Heart Disease and Stroke Statistics. Circulation. 2018; 137: e67-e492.

ŤŤŤŤ

More than 90% of stroke-causing clots that come from the heart are formed in an area called the left atrial appendage (LAA).

Holmes DR, Atrial Fibrillation and Stroke Management: Present and Future, Seminars in Neurology 2010;30:528–536

2014 ACC/AHA/HRS Treatment Guidelines to Prevent Thromboembolism in Patients with AF & 2019 Focused Update

Balance str reduction be bleeding	oke risk enefit vs. g risk	ΓΪ
CHA ₂ DS ₂ -VASc Score in Men	CHA ₂ DS ₂ -VASc Score In Women	Recommendation
0	0	No anticoagulant
1	2	Aspirin (81-325 mg daily) or oral anticoagulants may be considered*
≥2	≥ 3	Oral anticoagulants are recommended**

Long-Term Oral Anticoagulation is Not Ideal for All NVAF Patients

Warfarin	Direct Oral Anticoagulants
Bleeding Risk	Bleeding Risk
Daily Regimen	Daily Regimen
High Non-Adherence Rates	High Non-Adherence Rates
Regular INR Monitoring	Complicate Surgical Procedures
Food & Drug Interaction Issues	Drug Interaction Issues
Complicate Surgical Procedures	High Cost

AMULET

WATCHMAN 2.5

 Table 1
 Summary of important trials of percutaneous left atrial appendage occlusion and associated limitations

WATCHMAN 2.5

Table 1 Summary of important trials of percutaneous left atrial appendage occlusion and associated limitations

WATCHMAN 2.5

 Table 1
 Summary of important trials of percutaneous left atrial appendage occlusion and associated limitations

WATCHMAN 2.5

Table 1 Summary of important trials of percutaneous left atrial appendage occlusion and associated limitations

Trial	Study arms	Sample size	Outcomes of interest	Results
PROTECT AF ¹⁵	LAAO using first- generation Watchman vs warfarin, 2:1 randomization, noninferiority study design	707	 Primary efficacy endpoint = composite of stroke, SE, and CV/ unexplained deaths Primary safety endpoint = composite of significant bleeding or procedure-related complications (serious pericardial effusion, device embolization, and procedure-related stroke) 	 LAAO noninferior for the efficacy endpoint (95% credible interval 0.35– 1.25, criteria for noninferiority <2) High rate of significant pericardial effusion (4.8%), procedural stroke (1.1%), and embolization (0.6%) in the LAAO arm
PREVAIL ¹⁶	LAAO using first- generation Watchman vs warfarin, 2:1 randomization, noninferiority study design	407	 (1) First primary efficacy endpoint = composite of all stroke, SE, and CV/ unexplained deaths (2) Second primary efficacy endpoint = composite of ischemic stroke and SE 7 days after implantation (3) Primary safety endpoint = composite of all-cause death, ischemic stroke, SE, and procedure- related complications within 7 days of implantation 	 LAAO was inferior for the first primary efficacy endpoint (95% credible interval 0.57–1.89, criteria for noninferiority <1.75) LAAO was noninferior for the second primary efficacy endpoint (rate difference -0.0190 to 0.0273, criteria for noninferiority <0.0275) Safety events 2.2% in the LAAO arm
PINNACLE FLX ¹⁷	Single arm (LAAO using Watchman FLX)	400	 Primary efficacy endpoint = effective closure (device leak of ≤5 mm at 1 year) Primary safety endpoint = death, ischemic stroke, SE, or device-related major events requiring surgery or endovascular interventions within 7 days of implant 	 Incidence of primary efficacy endpoint was 100%, which exceeds performance goal of 97% Incidence of primary safety endpoint was 0.5% with 95% upper CI of 1.6, meeting the performance goal of <4.21

Trial	Study arms	Sample size	Outcomes of interest	Results
AMULET IDE ¹⁸	Amulet vs first- generation Watchman, 1:1 randomization, noninferiority study design	1878	 Primary efficacy endpoint = composite of ischemic stroke or SE Primary safety endpoint = composite of procedure-related complications, all-cause death, and major bleeding 	 (1) Amulet was noninferior to the Watchman device for the primary efficacy endpoint (2.8% vs 2.8%, P < .001 for noninferiority) (2) Amulet was noninferior to the Watchman device for the primary safety endpoint (14.5% vs 14.7%, P < .001 for noninferiority)
PRAGUE-17 ³²	LAAO vs DOACs, 1:1 randomization, noninferiority study design	402	Primary endpoint = composite of cardioembolic events (stroke, transient ischemic attack, and SE), cardiovascular death, clinically relevant bleeding, and procedure/ device-related complication	LAAO was found to be noninferior to the DOACs for the primary endpoint (hazard ratio 0.81, 95% CI 0.56–1.18, $P = .27$, noninferiority criteria were $P < .006$)

AMULET

WATCHMAN 2.5

Trial	Study arms	Sample size	Outcomes of interest	Results
AMULET IDE ¹⁸	Amulet vs first- generation Watchman, 1:1 randomization, noninferiority study design	1878	 Primary efficacy endpoint = composite of ischemic stroke or SE Primary safety endpoint = composite of procedure-related complications, all-cause death, and major bleeding 	 (1) Amulet was noninferior to the Watchman device for the primary efficacy endpoint (2.8% vs 2.8%, P < .001 for noninferiority) (2) Amulet was noninferior to the Watchman device for the primary safety endpoint (14.5% vs 14.7%, P < .001 for noninferiority)
PRAGUE-17 ³²	LAAO vs DOACs, 1:1 randomization, noninferiority study design	402	Primary endpoint = composite of cardioembolic events (stroke, transient ischemic attack, and SE), cardiovascular death, clinically relevant bleeding, and procedure/ device-related complication	LAAO was found to be noninferior to the DOACs for the primary endpoint (hazard ratio 0.81, 95% CI 0.56–1.18, $P = .27$, noninferiority criteria were $P < .006$)

Appendage (L

AMULET

WATCHMAN 2.5

Table 1 Sum	Table 1 Summary of important trials of percutaneous left atrial appendage occlusion and associated limitations					
Trial	Study arms	Sample size	Outcomes of interest	Results		
AMULET IDE ¹⁸	Amulet vs first- generation Watchman, 1:1 randomization, noninferiority study design	1878	 Primary efficacy endpoint = composite of ischemic stroke or SE Primary safety endpoint = composite of procedure-related complications, all-cause death, and major bleeding 	 (1) Amulet was noninferior to the Watchman device for the primary efficacy endpoint (2.8% vs 2.8%, P < .001 for noninferiority) (2) Amulet was noninferior to the Watchman device for the primary safety endpoint (14.5% vs 14.7%, P < .001 for noninferiority) 	61%	AMULET
PRAGUE-17 ³²	LAAO vs DOACs, 1:1 randomization, noninferiority study design	402	Primary endpoint = composite of cardioembolic events (stroke, transient ischemic attack, and SE), cardiovascular death, clinically relevant bleeding, and procedure/ device-related complication	LAAO was found to be noninferior to the DOACs for the primary endpoint (hazard ratio 0.81, 95% CI 0.56–1.18, $P = .27$, noninferiority criteria were $P < .006$)	36%	WATCHMAN 2.5

2015

WATCHMAN 2.5

2020

WATCHMAN FLX

2021

AMULET

2023

WATCHMAN FLX Pro

Patient Selection

Patient Selection

Transcatheter LAAC is appropriate for patients with **nonvalvular AF with high thromboembolic risk** who are **not suited for long-term OAC** and who have **adequate life expectancy** (minimum >1 year) and quality of life to benefit from LAAC. **There should be patient-provider discussion for shared decision making.**

CHA2DS2VASc SCORE (STROKE RISK)

	CONDITION	POINTS	SCORE	YEARLY STROKE RISK (%)
С	Congestive Heart Failure	1	0	0
н	Hypertension (SBP > 160)	1	1	1.3
A.	Age ≥ 75 Years	2	2	2.2
D	Diabetes Mellitus	1	3	3.2
6	Dries strake TA or Thromboomholism		4	4.0
52	Phor stroke, TIA or Thromboembolism	2	5	6.7
V	Vascular Disease (PAD, MI)	1	6	9.8
Sc	Sex Category (Female)	1	7	9.6
А	Age 65-74 Years	1	8	6.7
TO	TAL POINTS		9	15.2

HAS-BLED SCORE

(BLEEDING RISK WITH WARFARIN)

	CONDITION	POINTS	SCORE	YEARLY MAJOR BLEEDING RISK (9
н	Hypertension	1	0	1.13
A	Abnormal Renal/Liver Function (1 point each)	1 or 2	1	1.02
s	Hemorrhagic Stroke	1	2	1.88
	Disadian Ultran of Disaschian		3	3.74
в	Bleeding History of Disposition	1	4	8.7
L	Labile	1	5+	12.5
E	Elderly	1		
D	Current Drugs (medication)/Alcohol Use (1 point each)	1 or 2		
то	TAL POINTS			

Pre-Procedural

Intra-Procedural

Post-Procedural

Imaging

Pre-Procedural

Baseline preprocedural imaging with **TEE** or **cardiac computed tomography angiography** is recommended before LAAC

Imaging

Intra-Procedural

Intraprocedural imaging guidance with **TEE or ICE** and **contrast angiography** is strongly recommended

Imaging

Post-Procedural

Table 5. Imaging surveillance modality and optimal imaging at differentpostdevice implantation time points.

Imaging timing	Immediate postdevice implant	Prehospital discharge	45-d follow-up	1-y follow-up (optional)
Transthoracic echocardiogram	_	+++	_	-
Transesophageal echocardiogram	+++	-	++	++
ССТА	_	-	+++	+++
Complication surveillance	Pericardial effusion	Device embolization	Peridevice leak	Device- related thrombus
Complication surveillance Transthoracic echocardiogram	Pericardial effusion +++	Device embolization +	Peridevice leak –	Device- related thrombus –
Complication surveillance Transthoracic echocardiogram Transesophageal echocardiogram	Pericardial effusion +++ +++	Device embolization + +++	Peridevice leak – ++	Device- related thrombus - ++++

+++, strongly recommended; ++, less strongly recommended; +, recommended; -, not required.

CCTA, cardiac computed tomography angiography.

Table 4. Procedural and late postprocedural complications of left atrial appendage occlusion.					
Periprocedural complications	Postprocedural complications				
Death (<0.2%)	Late pericardial effusion & tamponade (~1%)				
Stroke (<0.2%): Ischemic: air or thromboembolism Hemorrhagic Systemic embolism (rare) Pericardial tamponade (~1%)	Peridevice leak: >5 mm on TEE: 1%-3% >3 mm on TEE: 10%-25%				
	Device-related thrombus (3%-5%)				
Device embolization (~0.2%)	Late device migration/ embolization (infrequent)				
Vascular complications: retroperitoneal bleed, arteriovenous fistula, pseudoaneurysm	Device erosion (rare)				
Other: major bleeding, renal failure, respiratory failure, sepsis, MI, endotracheal/esophageal damage, interfering surrounding structures, device/contrast allergy, pericarditis	latrogenic atrial septal defects (rare to require intervention)				

MI, myocardial infarction; TEE, transesophageal echocardiography.

Table 4. Procedural and late postprocedural complications of left atrial appendage occlusion.					
Periprocedural complications	Postprocedural complications				
Death (<0.2%)	Late pericardial effusion & tamponade (~1%)				
Stroke (<0.2%): Ischemic: air or thromboembolism Hemorrhagic	Peridevice leak: >5 mm on TEE: 1%-3% >3 mm on TEE: 10%-25%				
Systemic embolism (rare) Pericardial tamponade (~1%)	Device-related thrombus (3%-5%)				
Device embolization (~0.2%)	Late device migration/ embolization (infrequent)				
Vascular complications: retroperitoneal bleed, arteriovenous fistula, pseudoaneurysm	Device erosion (rare)				
Other: major bleeding, renal failure, respiratory failure, sepsis, MI, endotracheal/esophageal damage, interfering surrounding structures, device/contrast allergy, pericarditis	latrogenic atrial septal defects (rare to require intervention)				

MI, myocardial infarction; TEE, transesophageal echocardiography.

Table 1. Ongoing endovascular LAAC randomized controlled trials and postprocedural antithrombotic strategies.

	OAC-eligible patients			OAC-contraindicated patients		
Trial	OPTION trial: WATCHMAN FLX vs OAC after PV ablation	CHAMPION-AF trial: WATCHMAN FLX vs DOAC	CATALYST trial: Amulet vs DOAC	ASAP-TOO trial: WATCHMAN vs control	STROKE-CLOSE trial: Amulet vs control	CLOSURE-AF trial: LAAC vs OAC
N Postprocedural antithrombotic strategies	1600 DOAC or warfarin and aspirin for 3 mo after LAAC	3000 DOAC and aspirin or DAPT for 3 mo after LAAC	2650 DAPT for 3 mo after LAAC	888ª DAPT for 3 mo after LAAC	750 Aspirin \pm clopidogrel for 45 d after LAAC	1512 DAPT after LAAC
Control	OAC	DOAC	DOAC	Aspirin or none	OAC, antiplatelet, or none	DOAC or warfarin

DAPT, dual antiplatelet therapy; DOAC, direct oral anticoagulation; LAAC, left atrial appendage closure; OAC, oral anticoagulation; PV, pulmonary vein.

^a Study stopped prematurely (~500 patients enrolled).

Figure 1.

Examples of transcatheter LAAC devices. (A) WATCHMAN FLX, (B) Amulet, (C) LAmbre, (D) Wavecrest, and (E) Conformal. LAAC, left atrial appendage closure.

Thank You!

Figure 1.

Examples of transcatheter LAAC devices. (A) WATCHMAN FLX, (B) Amulet, (C) LAmbre, (D) Wavecrest, and (E) Conformal. LAAC, left atrial appendage closure.

Damir Vukomanovic et al., J Am Coll Cardiol Case Rep. 2022 Nov, 4 (21) 1409-1413

Table 2. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation.

Recommendations	Class of recommendation	Level of evidence
After surgical occlusion or exclusion of the LAA, it is recommended to continue anticoagulation in at-risk patients with AE for stroke prevention	I	В
LAA occlusion may be considered for stroke prevention in patients with AF and contraindications for long-term anticoagulant treatment (eg, those with a previous life- threatening bleed without reversible cause).	llb	В
Surgical occlusion or exclusion of the LAA may be considered for stroke prevention in patients with AF undergoing cardiac surgery. Surgical occlusion or exclusion of the LAA may be	ШЬ	в
considered for stroke prevention in patients undergoing thoracoscopic AF surgery.		

ACC, American College of Cardiology; AF, atrial fibrillation; AHA, American Heart Association; HRS, Heart Rhythm Society; LAA, left atrial appendage. Adapted from January et al.¹⁹

Table 2. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation.

Recommendations	Class of recommendation	Level of evidence
After surgical occlusion or exclusion of the LAA, it is recommended to continue anticoagulation in at-risk patients with AE for stroke prevention	I	В
LAA occlusion may be considered for stroke prevention in patients with AF and contraindications for long-term anticoagulant treatment (eg, those with a previous life- threatening bleed without reversible cause).	llb	В
Surgical occlusion or exclusion of the LAA may be considered for stroke prevention in patients with AF undergoing cardiac surgery. Surgical occlusion or exclusion of the LAA may be	ШЬ	в
considered for stroke prevention in patients undergoing thoracoscopic AF surgery.		

ACC, American College of Cardiology; AF, atrial fibrillation; AHA, American Heart Association; HRS, Heart Rhythm Society; LAA, left atrial appendage. Adapted from January et al.¹⁹

COMPLIACATIONS/ADVERSE EVENTS

2.1. Physician initial requirements: >50 prior left-sided ablations or structural procedures and >25 transseptal punctures
2.2. Skill maintenance: >25 transseptal punctures and >12 LAACs over 2 years
2.3. Institutional requirements: on-site cardiovascular surgery

(CVS) program backup during implanter's early learning curve

Patient Selection

2. Physician and Institutional Requirements.

2.1. Physician initial requirements: >50 prior left-sided ablations or structural procedures and >25 transseptal punctures
2.2. Skill maintenance: >25 transseptal punctures and >12 LAACs over 2 years
2.3. Institutional requirements: on-site cardiovascular surgery

(CVS) program backup during implanter's early learning curve

Table 1. Ongoing endovascular LAAC randomized controlled trials and postprocedural antithrombotic strategies.

	OAC-eligible patients			OAC-contraindicated patients		
Trial	OPTION trial: WATCHMAN FLX vs OAC after PV ablation	CHAMPION-AF trial: WATCHMAN FLX vs DOAC	CATALYST trial: Amulet vs DOAC	ASAP-TOO trial: WATCHMAN vs control	STROKE-CLOSE trial: Amulet vs control	CLOSURE-AF trial: LAAC vs OAC
N Postprocedural antithrombotic strategies	1600 DOAC or warfarin and aspirin for 3 mo after LAAC	3000 DOAC and aspirin or DAPT for 3 mo after	2650 DAPT for 3 mo after LAAC	888ª DAPT for 3 mo after LAAC	750 Aspirin \pm clopidogrel for 45 d after LAAC	1512 DAPT after LAAC
Control	OAC	DOAC	DOAC	Aspirin or none	OAC, antiplatelet, or	DOAC or warfarin

DAPT, dual antiplatelet therapy; DOAC, direct oral anticoagulation; LAAC, left atrial appendage closure; OAC, oral anticoagulation; PV, pulmonary vein. ^a Study stopped prematurely (~500 patients enrolled).