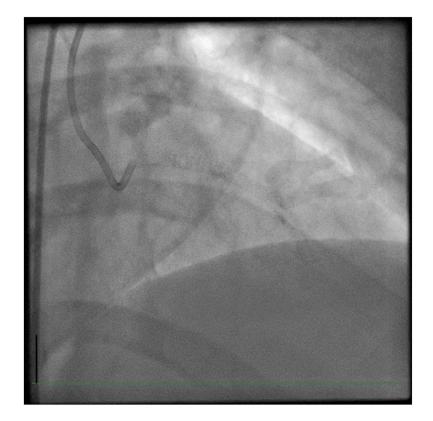
Coronary Microvascular Dysfunction & Vasospasm

Nadia Sutton, MD, MPH Assistant Professor, Division of Cardiovascular Medicine Assistant Professor, Department of Biomedical Engineering Director, Interventional Cardiology Research

VANDERBILT VUNIVERSITY


MEDICAL CENTER

Disclosures Grant/Research Support: NIH Consulting/ Advisory or Honoraria: Abbott, Philips, Zoll

Key Topics to Discuss

- Prevalence and pathophysiology of Coronary Microvascular Dysfunction (CMD)
- ANOCA, INOCA, MINOCA
- The diagnosis of CMD and vasospasm in the cath lab
- Why we need to know? The prognosis of CMD
- What can we do? The current treatment options for CMD

58-year-old female with a past medical history significant for poliomyelitis and resultant postpolio syndrome impacting the R lower extremity, GERD, COVID-19 (9/2021), hypertension, dyslipidemia, prediabetes, family history of premature CAD, and CAD s/p anterior STEMI with s/p PCI s/p 2 overlapping DES in ostial to mid LAD; PTCA of the ostial diagonal in 2020, who has recently been evaluated for dyspnea and fatigue. She underwent a stress echo in 2022, notable for ischemia of the apical septum. She presents to the catheterization laboratory to evaluate hemodynamics and coronary anatomy.

Given her abnormal stress test and symptoms and otherwise reassuring angiogram, microvascular testing was pursued. The LVEDP was 20 mm Hg, suggesting optimal treatment for HFpEF may also help.

IMR= 59 CFR= 1.6

Dx: Microvascular Angina

Already on beta-blocker (Coreg) Calcium channel blocker added

Why are we doing this?

CMD is common

- In the catheterization lab, out of 397,954 patients, no coronary artery disease was reported in 39.2% of patients.¹
- Coronary microvascular dysfunction (CMD) in patients with normal or non-obstructive CAD (~30–50%) and is associated with a higher risk of major adverse cardiovascular events (MACE).^{2, 3}

1. Patel M. NEJM 2010 ;362:886-95

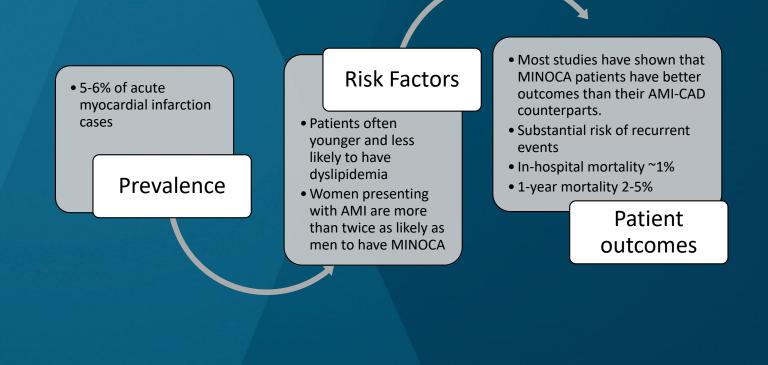
2. P. Ong et al. International Journal of Cardiology 2018: 250; 16–20

3. Rahman, H., et al., Heart 2019;105:1536-1542

4. Taqueti et al. J Am Coll Cardiol. 2018 November 27; 72(21): 2625–2641

Definitions

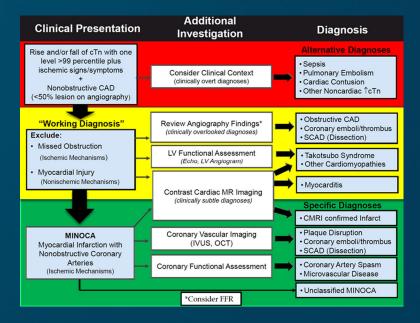
INOCA = Ischemia with Non-obstructive Coronary Arteries ANOCA = Angina with Non-obstructive Coronary Arteries


 In INOCA, the mismatch between blood supply and myocardial oxygen demands may be caused by coronary microvascular dysfunction and/or epicardial coronary artery spasm.

Definition

MINOCA = Myocardial infarction with non-obstructive coronary artery disease

- 1. AMI criteria as defined by the "Fourth Universal Definition of Myocardial Infarction"
- 2. Non-obstructive coronary arteries, with no lesions ≥50% in a major epicardial vessel
- 3. No other clinically overt specific cause that can serve an alternative cause for the acute presentation.


MINOCA: Prevalence, Risk Factors, and Outcomes

Differential Diagnosis for MINOCA

The diagnosis of MINOCA should exclude:

- 1) Other overt causes for elevated troponin (e.g., pulmonary embolism, sepsis, etc.)
- 2) Overlooked obstructive coronary disease (e.g., distal stenosis or occluded small branches)
- 3) Nonischemic causes for myocyte injury (e.g., myocarditis)

Tamis-Holland J et al. Circulation 2019

Diagnostic options

301 women with clinical diagnosis of MI enrolled 170 MINOCA

Infarction n=38 (32.8%)

Regional Injury n=24 (20.7%)

Cause Identified

Takotsubo Syndrome

Myocarditis

Myocardial infarction (MI)

Non-Ischemic Cardiomyopathy n=3 (2.6%)

OCT N=145

Culprit Lesion n=67 (46.2%)

Intimal Bump (Spasm) n=3 (2.1%)

Plaque Rupture Thrombus without

plaque rupture

Intra-Plaque Cavity

Layered Plaque

SCAD

n=8 (5.5%)

n=5 (3.1%)

n=31 (21.4%)

n=19 (13.1%)

n=1 (0.7%)

HARP-MINOCA: Coronary Optical Coherence Tomography and Cardiac Magnetic Resonance Imaging to Determine Underlying Causes of Myocardial Infarction With Nonobstructive Coronary Arteries in Women

- Prospective, multicenter, international, observational study of women (301) with MINOCA
- If non-obstructive coronary artery disease (< 50% stenoses) on angiography, multivessel OCT and cardiac MRI were performed

CMR N=116

Myocarditis

Non-Ischemic

145 OCT interpretable 116 CMR

n=24 (20.7%)

n=17 (14.7%)

Normal

n=30

(25.9%)

No cause identified

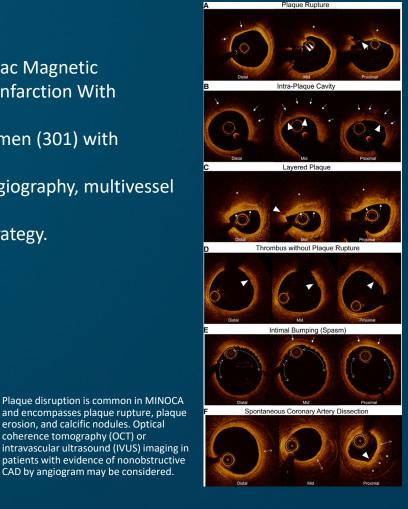
n=18 (15.5%)

(23 OCT contraindications, 2 not interpretable)

Takotsubo Syndrome n=4 (3.4%)

Other Cardiomyopathy n=3 (2.6%)

Integration of OCT and CMR N=116


n=98 (84.5%)

n=74 (63.8%)

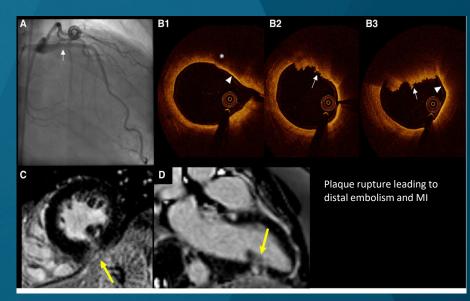
n=17 (14.7%)

n=4 (3.4%)

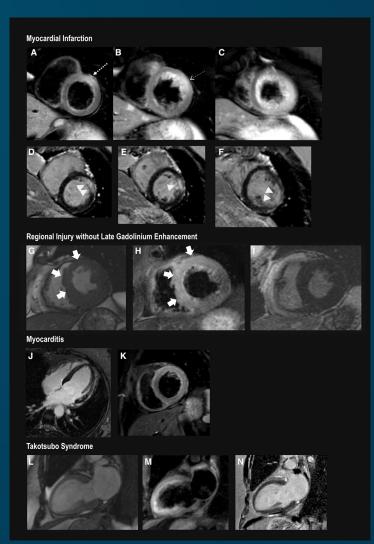
• 84.5% of women had an identifiable cause of their MI with this strategy.

Reynolds H et al. Circulation 2021

Plaque disruption is common in MINOCA

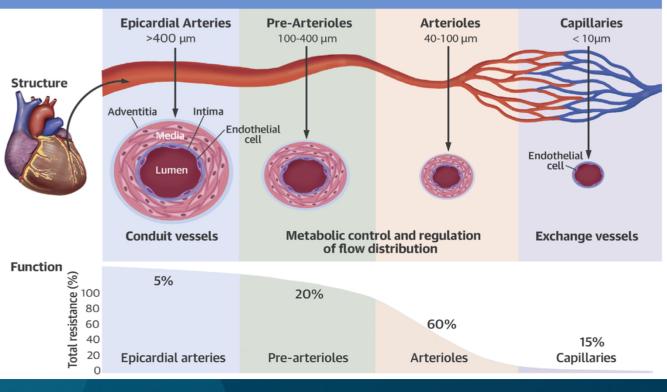

erosion, and calcific nodules. Optical

CAD by angiogram may be considered.


coherence tomography (OCT) or

Diagnostic options

- Cardiac MRI can reveal evidence of myocardial infarction, myocarditis, Takotsubo Syndrome.
- Coronary thrombosis or embolism can result in MINOCA, either with or without a hypercoagulable state.


Reynolds H et al. Circulation 2021

Coronary Macro vs. Microcirculation

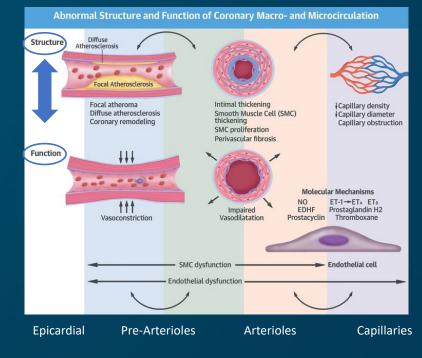
The <u>macrocirculation</u> (epicardial arteries) has a conductance function exhibiting minimal resistance to coronary flow.^{1,2}

The <u>microcirculation</u> is responsible for **regulation and distribution** of blood flow matching the needs of local tissue.^{1,2}

Normal Structure and Function of Coronary Macro- and Microcirculation

Taqueti et al. J Am Coll Cardiol. 2018 Schelbert, H.R. J. Nucl. Cardiol. 2010

Pathophysiology of coronary microvascular dysfunction


• Structural changes or microvascular remodeling

Functional abnormalities

Both changes have been associated with CMD.¹

This spectrum of abnormalities does not include atheroma, which occurs in epicardial arteries, but is nonetheless likely magnified by the presence of atherosclerosis, particularly in patients with CVD risk factors.¹

These changes lead to microvascular obstruction with luminal narrowing of the intramural arterioles and capillaries.¹

Symptoms of microvascular dysfunction

Chest heaviness/tightness/pressure, often exertional

Shortness of breath

Nonspecific: fatigue, lack of energy

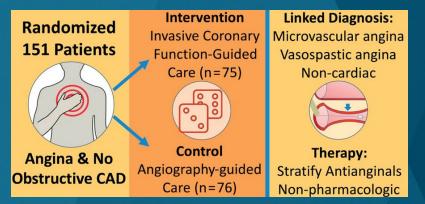
Exercise intolerance

Possible heart failure and acute myocardial infarction

Definition of Chest Pain

TOP 10 TAKE-HOME MESSAGES FOR THE EVALUATION AND DIAGNOSIS OF CHEST PAIN

1. **Chest Pain Means More Than Pain in the Chest.** Pain, pressure, tightness, or discomfort in the chest, shoulders, arms, neck, back, upper abdomen, or jaw, as well as shortness of breath and fatigue should all be considered anginal equivalents.


Recommendation for Considerations for Older Patients With Chest Pain							
COR	LOE	RECOMMENDATION					
1	C-LD	 In patients with chest pain who are >75 years of age, ACS should be considered when accompanying symptoms such as shortness of breath, syncope, or acute delirium are present, or when an unexplained fall has occurred (1). 					

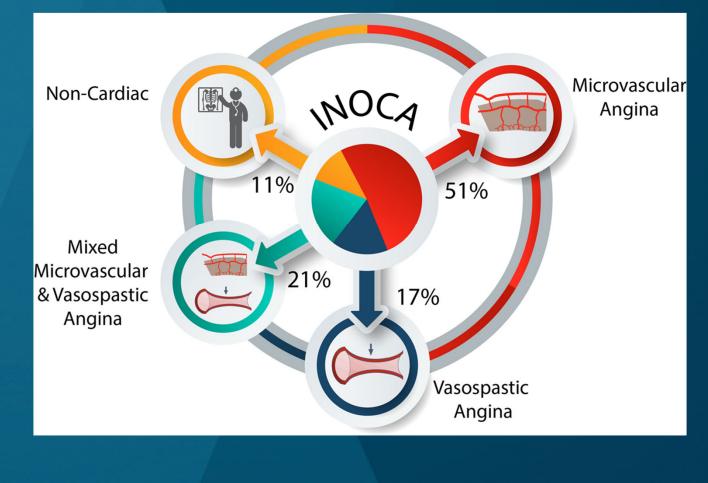
Gulati M et al., JACC 2021

CorMicA Trial

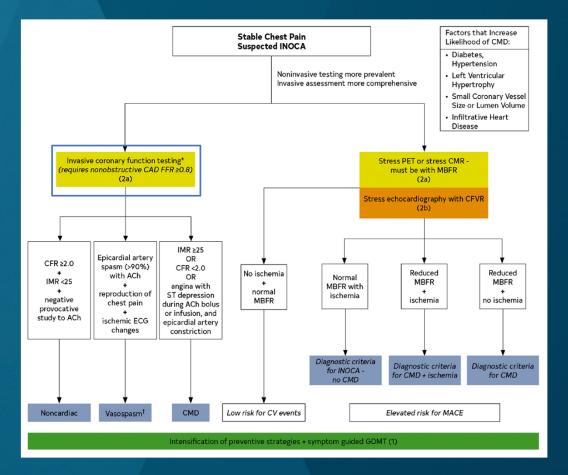
A randomized, controlled, blinded trial of medical therapy versus standard care in INOCA patients

Purpose: Test whether an interventional diagnostic procedure (IDP) linked to stratified medicine improves health status in patients with INOCA

Guidewire-based assessment of coronary flow reserve, index of microcirculatory resistance, fractional flow reserve, followed by vasoreactivity testing with acetylcholine.


Primary endpoint: Mean difference in angina severity at 6 months

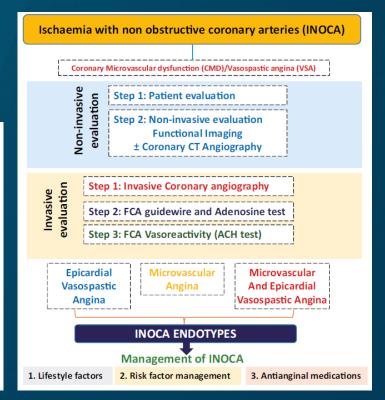
Improved Angina and Quality of Life


1. Ford et al. J Am Coll Cardiol Intv 2020;13:33-45

High Prevalence of Microvascular Angina

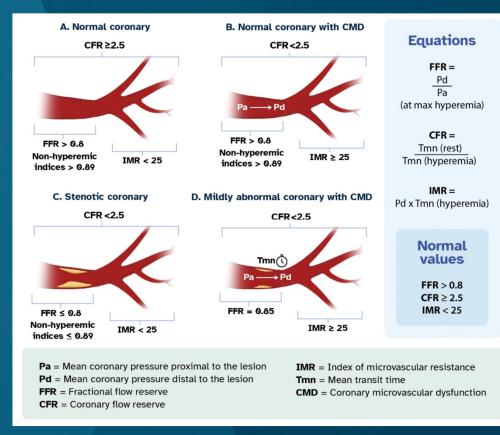
Ford T et al. Circ Interventions 2019

Stable Ischemic Heart Disease: INOCA



Gulati M et al., JACC 2021

EAPCI Consensus Document 2020¹

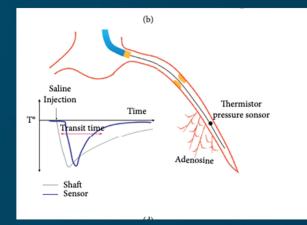

Recommendations

- INOCA should be recognized as a clinically important entity in daily clinical practice.
- 2 A systematic approach to diagnose and treat these patients should be implemented by clinicians and interventional cardiologists dealing with these patients.
- 3 National and international scientific societies, as well as the pharmaceutical and biomedical industries to support future research to address the incomplete understanding of the pathophysiology, the lack of targeted pharmacological treatment, and the evidence-based management of patients with INOCA.
- 4 Creating awareness of this condition through campaigns and media to ensure timely provision of care to these patients.

Physiological Indices Assess Different Parts of the

Circulation

Kerkar A et al.,...Sutton NR. Current Treatment Options 2023

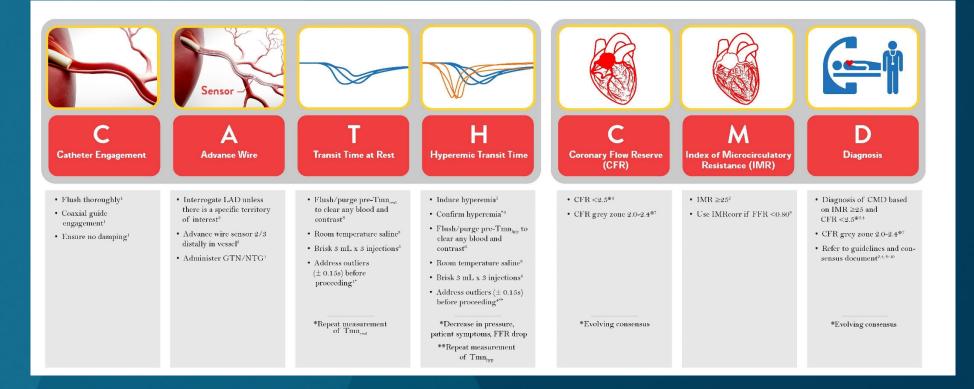

Comparison of CMD Diagnostic Options

	Method	Quantification	Tracer	Spatial resolution	Recording time
Noninvasive	SPECT	None	Radio isotopes	Very low	Long
	PET	Perfusion (mL/min/g) gold standard	Radio isotopes (cyclotron- generated)	Low	Long
	СТ	Perfusion (mL/min/g)	Contrast agent	Very high	Low
	MRI	Perfusion (mL/min/g)	Contrast agent	Moderate	Moderate
	Ultrasound	Perfusion (mL/min/g)	Microbubbles	High	Real time
Invasive	Doppler wire	Flow velocity (mm/s)	None	Selective assessment in target vessel territory	
	Thermodilution	Blood flow (mL/min)	Saline (body temperature)		
	CTFC	None	Contrast agent		

Maas et al. EMJ Int Cardiol. 2019;7[Suppl 1]:2-17 (reproduced from Frishman WH. Pharmacology of the nitrates in angina pectoris. Am J Cardiol. 1985;56(17):81-131)

Microvascular Dysfunction

- Coronary microvascular dysfunction may contribute to MINOCA and requires further investigation.
- CFR may be measured invasively (Doppler or Thermodilution) or noninvasively (e.g. by PET)
- Defined as Index of Microvascular Resistance ≥ 25 and Coronary Flow Reserve < 2.5, 2.0-2.4 considered CFR "grey zone"

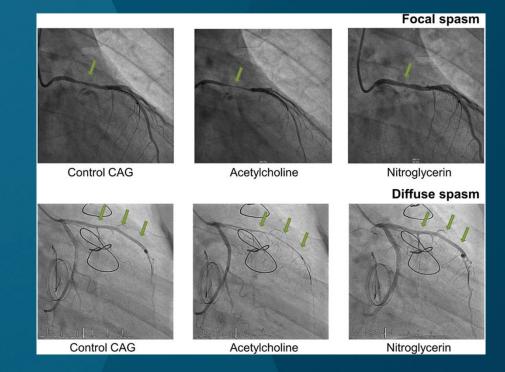


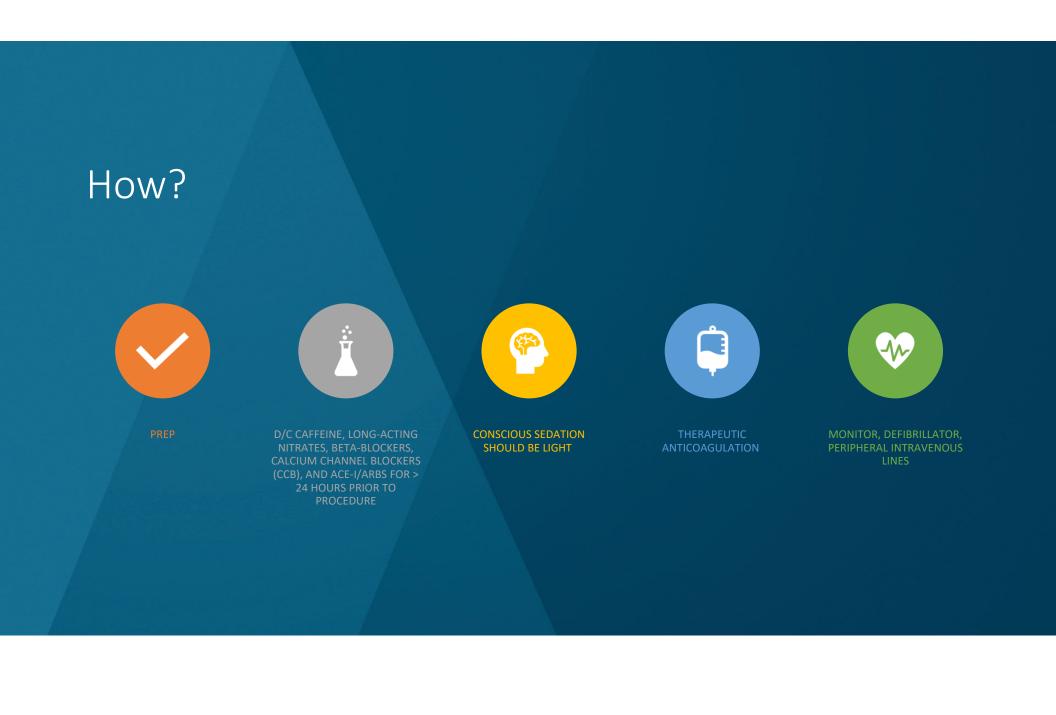
IMR = Index of microvascular resistance

IMR = Mean transit time (Tmn) at hyperemia x distal pressure

CATH CMD

Developed by Abbott Vascular


- 47 year-old female with a history of mild depression and anxiety
- Remote prior tobacco use
- 2 normal pregnancies
- Multiple (5+) primary care and cardiology visits for atypical chest pain even after prior PCIs. CP occurs at rest and with exertion, of variable duration, with prior reassuring treadmill stress echo test.
- Currently on an anti-depressant


Video credit: Dr. Hady Lichaa

Coronary Vasospasm

- Coronary vasospasm is another common cause of MINOCA / INOCA / ANOCA, defined as >90% vasoconstriction of an epicardial coronary artery resulting in compromised coronary blood flow.
- The gold standard technique for diagnosing coronary spasm is administration of high-dose intracoronary acetylcholine boluses with the response evaluated by invasive contrast angiography.

Tamis-Holland J et al. Circulation 2019 and Vlastra et al. Netherlands Heart Journal 2017

How?

Vascular access

- Avoid vasodilators (relevant for radial access)
- 6 F preferred
- Generally, operator preference

How?

Choice of Coronary Artery

• LAD only vs. LAD & RCA?

Considerations:

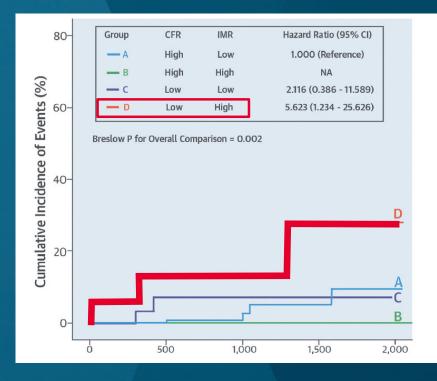
- Time (and timing relative to MVD adenosine testing)
- Arrhythmias
- Suspicion for regional spasm
- Prior extensive stenting
- ?Need for temp transvenous pacemaker

How?

- Graded doses of Ach
- Starting dose of 20 mcg
- Higher (spasm dose) of 50 mcg for RCA or 100 mcg for LAD
- 200 mcg dose if no spasm at lower doses and spasm strongly suspected (LAD only)

Safety

TABLE 1 Major and Minor Complications During Provocative Testing With Intracoronary ACh Administration											
First Author	All Major Complications	Death	VT/VF	мі	Shock	All Minor Complications	Transient Hypotension	AF	Bradycardia With Management	PVC	Other
Bill et al ¹⁹	0	0	0	0	0	0.9	-	0.9	-	-	7.6% transient bradycardia
Deyama et al ²⁰	1.4	0	1.4	0	0	NR	NR	NR	NR	NR	-
Ford et al ²¹	0	0	0	0	0	9.3	-	5.9	3.3	-	30.5% transient bradycardia
Konst et al ²²	0	0	0	0	0	0	-	-	-	-	13.1% transient bradycardia
Lee et al ²³	0	0	0	0	0	2.3	-	0.1	2.1	-	26.5% transient bradycardia
Montone et al ²⁴	0.3	0	1.0	0	0	2.6	0	2.6	-	-	6.1% transient bradycardia
Ong et al ²⁵	0.1	0	1.0	0	0	0.2	0	0.1	0.1	-	0.6% transient bradycardia
Pargaonkar et al ²⁶	0	0	0	0	0	1.1	-	1.1	0	-	10.1% transient bradycardia
Probst et al ²⁷	0	0	0	0	0	3.9	1.1	1.6	-	1.1	12.8% transient bradycardia
Sara et al ²⁸	0	0	0	0	0	NR	NR	NR	NR	NR	-
Sato et al ²⁹	1.0	0	1.0	0	0	NR	NR	NR	NR	NR	-
Sueda et al ³⁰	3.2	0	2.3	0	0.9	24.8	-	24.8	-	-	0.1% cardiac tamponade
Takagi et al ³¹	4.9	0	4.9	0	0	0.7	-	-	-	0.7	4.1% transient bradycardia
Tateishi et al ³²	1.7	0	0.9	0.2	0.6	10.2	-	10.2	-	-	0.4% stroke
Tio et al ³³	0.7	0	0	0	0.7	1.3	0	0	1.3	-	2.0% transient bradycardia
Wei et al ³⁴	0.3	0	0	0.3	0	NR	NR	NR	NR	NR	0.3% air embolism, (coronary dissection ^a)

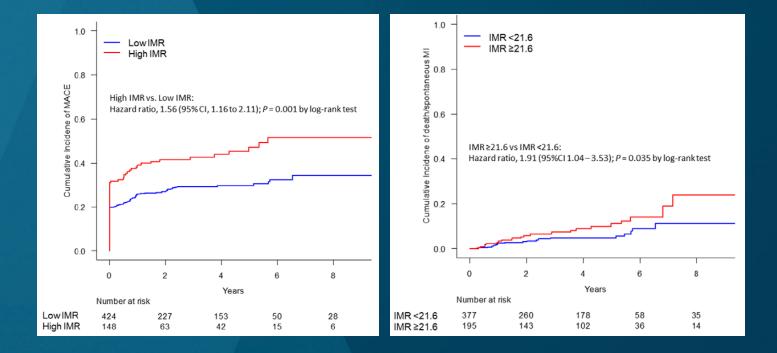

Values are %. "Wei et al reported 1 adverse event with non-flow-limiting coronary dissection, which likely resulted from Doppler wire advancement.

ACh = acetylcholine; AF = atrial fibrillation; NR = not reported; PVC = premature ventricular contraction; VF = ventricular fibrillation; MI = myocardial infarction; VT = ventricular tachycardia.

Takahashi et al. JACC 2022

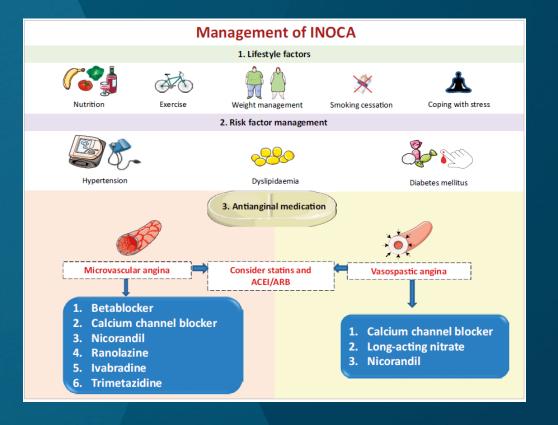
Prognosis

CFR and IMR Can Identify Patients With High Risk of Future Events



"These results suggest that invasive physiological assessment for microvascular disease with CFR and IMR can be helpful to identify patients at high risk for future cardiovascular events among those with high FFR"

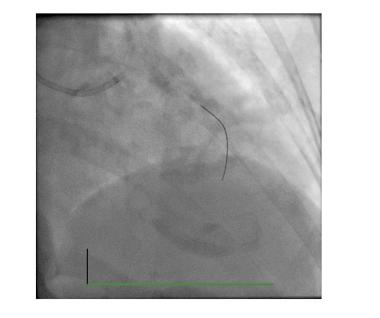
1. Lee JM et al; JACC Interv 2016;67:1158-1169

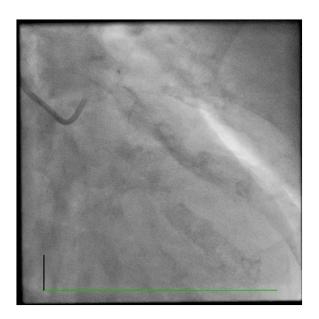

Post-PCI IMR Predicts MACE

Prognosis in Stable CAD

1. Nishi et al: Circ Cardiovasc Interv. 2019;12:e007889

Management of INOCA




1. Kunadian, Vijay; EAPCI Expert Consensus Document EHJ & Eurointervention 2020: ehaa503

- 62 year old female with hyperlipidemia, breast cancer s/p lumpectomy, chemo/radiation, depression, and a family history of premature coronary artery disease.
- Shortness of breath with steep inclines, occasional right sided chest discomfort not related to effort.
- She is a standardized patient and participated in several cardiology scenarios, and she is concerned about her symptoms.

Exercise stress echo: EF 60%, no significant valve issues, baseline wall motion normal, post-exercise images are technically difficult, reported as distal inferoseptal akinesis, distal inferior hypokinesis, distal lateral hypokinesis, possible distal LAD territory inducible ischemia.

- Findings discussed with patient in clinic.
- Coronary anatomy evaluation was recommended.
- Coronary CTA and invasive angiography were discussed.
- The option for invasive microvascular testing if coronary angiography was reassuring was discussed as a consideration.
- The patient opted for an invasive coronary angiogram.
- Antianginals were discussed/recommended.

Key Takeaways

- Common problem
- User-friendly system
- Results help patients
- Increasing interest from patients and clinicians

Thank you for your attention!

Nadia Sutton, MD, MPH nadia.sutton@vumc.org @nadia_sutton

VANDERBILT VUNIVERSITY MEDICAL CENTER