Pacing the Way: Challenges of Pacemakers in Pediatrics and Adults with Congenital Heart Disease

Iqbal El Assaad, MD

Disclosure

• I have no financial relationships to disclose relevant to this presentation

Mulpuru, S.K. et al. J Am Coll Cardiol. 2017;69(2):189-210.

Objectives

- Indications for pacing in pediatrics and adults with congenital heart disease (ACHD)
- Complexities of pacing in pediatrics and ACHD
 - How to choose type of pacemaker
 - Transvenous vs. epicardial vs. leadless
 - Specific ACHD cases

Indications

- Sinus node dysfunction
 - Common in Fontan patients and patients status post atrial switch procedure
- Advanced second or third degree AV block
 - Congenital
 - Postoperative
- Prevention or treatment of tachyarrhythmia
- Cardiac resynchronization therapy in case of dysfunction

Factors to Consider

- Size of the patient (age and weight)
- Cardiac and venous anatomy
- Surgical procedures performed that can affect the access to certain cardiac structures
- Number of previous surgical procedures
- Need for future magnetic resonance imaging

Epicardial Pacemaker

When to consider

- Patients < 15 kg
- Presence of intracardiac shunt lesion
- Limited access to atrium and ventricle
 - Single ventricle patients post Fontan
- Need for cardiac surgery

- Need for cardiac surgery
- Higher chronic stimulation threshold
- Higher lead failures and fractures, and
- Early depletion of battery life
- Coronary artery compression

Risk of venous occlusion is as high as **77%** in < 5 kg and 13% in > 5 kg

Epicardial Pacemaker

When to consider

- Patients < 15 kg
- Presence of intracardiac shunt lesion
- Limited access to atrium and ventricle
 - Single ventricle patients post Fontan
- Need for cardiac surgery

- Need for cardiac surgery
- Higher chronic stimulation threshold
- Higher lead failures and fractures, and
- Early depletion of battery life
- Coronary artery compression

- Multicenter, retrospective cohort of 202 patients with intracardiac shunts:
 - 1. 64 with transvenous (TV) leads
 - 2. 56 with epicardial leads
 - 3. 82 with right to left shunts but no pacemaker or ICD leads
- Outcome: occurrence of systemic thromboemboli
- Presence of TV leads was an independent predictor of outcome with greater than 2-fold increased risk.

Khairy P et al. Circulation. 2006

Epicardial Pacemaker

When to consider

- Patients < 15 kg
- Presece of intracardiac shunt lesion
- Limited access to atrium and ventricle
 - Single ventricle patients post Fontan
- Need for cardiac surgery

- Need for cardiac surgery
- Higher chronic stimulation threshold
- Higher lead failures and fractures, and
- Early depletion of battery life
- Coronary artery compression

Perucca et al. Pediatric Radiology 2021

Epicardial Pacemaker

When to consider

- Patients < 15 kg
- Presence of intracardiac shunt lesion
- Limited access to atrium and ventricle
 - Single ventricle patients post Fontan
- Need for cardiac surgery

- Need for cardiac surgery
- Higher chronic stimulation threshold
- Higher lead failures and fractures, and
- Early depletion of battery life
- Coronary artery compression

M.S. Silvetti et al. Europace. 2013

Epicardial Pacemaker

When to consider

- Patients < 15 kg
- Presence of intracardiac shunt lesion
- Limited access to atrium and ventricle
 - Single ventricle patients post Fontan
- Need for cardiac surgery

- Need for cardiac surgery
- Higher chronic stimulation threshold
- Higher lead failures and fractures, and
- Early depletion of battery life
- Coronary artery compression

Mah D et al. Heart Rhythm 2021

Endocardial Pacemaker

What & when to consider

- Patient > 15 kg
- Presence of intracardiac shunt lesion
- Know the patient's anatomy and surgical history!!!

- Vascular occlusion
- Thromboembolism risk
- Need for extraction

Chubb H et al. AER 2016

Moore J et al. JCE 2014

Atrial Switch Procedures

- High incidence of baffle obstruction
- Risk of phrenic nerve stimulation w/ LA lead
- Smooth LV wall
- CS anatomy

Endocardial Pacemaker

What to consider

- Patient > 15 kg
- Presence of intracardiac shunt lesion
- Know the patient's anatomy and surgical history!!!

- -Vascular occlusion
- Thromboembolism risk
- Need for extraction

Leadless Pacemaker

Performance of the Micra[™] Transcatheter Leadless Pacemaker in Children in the Real-World Setting

Current Challenges with Leadless Pacing

- Access
- AV synchrony
- Adequate sensing and capture in patients with large VSD patch
- Extractability?
- Long term impact of multiple leadless pacemakers on ventricular myocardium

30 yo w/ TOF status post repair with severe BIV dysfunction (RV EF 27%, LV EF 24%), CRBBB, and NSVT. On maximal GDT.

FIGURE 1 Representative Electroanatomic Map of Right Ventricular Activation in Our Patients With Tetralogy of Fallot

Mah D et al. JACC EP 2021

Mah D et al. JACC EP 2021

Conclusions

- Device therapy in children and adults with CHD poses unique challenges
- One-size-fits-all approach does **NOT** apply to this population
- Important to be aware of their anatomy and surgical procedures they have had

Questions?

Cleveland Clinic Children's

Every life deserves world class care.

- OD: 10.5 F, ID: 7.0 F
- Use with a minimum 10.5 F introducer
- Catheter designed for delivery of a 6F lead
- Working length of the catheter is 38 cm
- Requires at least a 58 cm lead length

- 1. Integrated bipolar tip electrodes
- 2. Dual deflection and curve
- 3.180° deflection control knob

TABLE 1 Patient Resp	TABLE 1 Patient Responses to Resynchronization Therapy					
	Age at CRT	Sex	Anatomy	Variable	Pre-CRT	Post-CRT
Single RVs						
Patient #1	5 yrs	М	Right-dominant atrioventricular	QRS duration, ms	180	110
			canal	RV function	Severe dysfunction	Moderate dysfunction
				BNP, pg/dl	3,312	114
Patient #2	3 yrs	F	Double-outlet RV, mitral stenosis, pulmonary atresia	QRS duration, ms	130	105
				RV function	Severe dysfunction	Moderate dysfunction
				BNP, pg/dl	613	52
Subpulmonary RVs						
Patient #3	27 yrs	Μ	Tetralogy of Fallot, pulmonary atresia	QRS duration, ms	250	140
				RV end-diastolic volume, ml	494	429
				RV ejection fraction, %	8	25
				LV end-diastolic volume, ml	159	152
				LV ejection fraction, %	33	61
				BNP, pg/dl	243	281
				Vo ₂ , ml/kg/min	12.6 (37% predicted)	12.1 (31% predicted)
Patient #4	36 yrs	Μ	Tetralogy of Fallot, pulmonary atresia	QRS duration, ms	260	160
				RV end-diastolic volume, ml	652	443
				RV ejection function, %	7	16
				LV ejection fraction, %	30	46
				BNP, pg/dl	40	43
				Weight, kg	113	99
Patient #5	48 yrs	М	Tetralogy of Fallot	QRS duration, ms	250	165
				RV function	Moderate dysfunction	Moderate dysfunction
				LV ejection fraction, %	51	57
LVs with right bundle branch block						
Patient #6	19 months	F	Multiple small left-sided	QRS duration, ms	130	95
			structures (mitral and aortic stenosis, coarctation) with VSD	LV ejection fraction, %	26	55
Patient #7	7 months	F	Multiple small left-sided	QRS duration, ms	115	90
			structures (mitral and aortic stenosis, coarctation) with VSD and hypoplastic left pulmonary artery	LV function	40%	Mild dysfunction