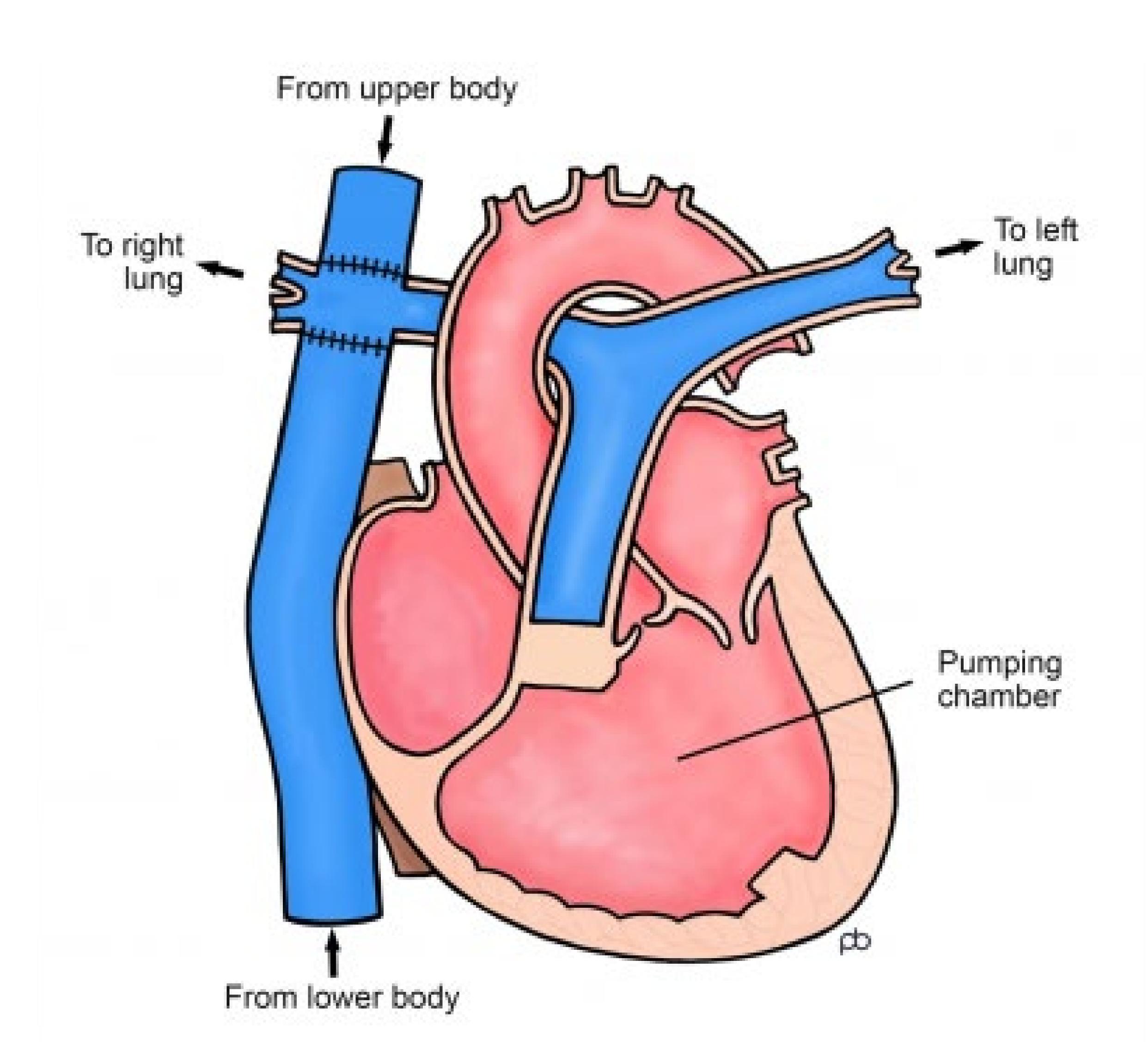


Evaluation of Invasively Measured Pressures and Echocardiographic Measures of Diastolic Function in Children with Fontan Circulation

Joshua Lee MD, Jyothi Matta MD, Andrea Lambert MD, Joshua Kurtz MD Norton Children's and University of Louisville Pediatrics Louisville, KY

Presenting Author Disclosure Information


- I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.
 - I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation.

Introduction

- Fontan procedure is the final step in a series of palliative surgeries for patients with single ventricle physiology
- Ongoing efforts to improve Fontan outcomes have largely focused on pulmonary arteries and systolic dysfunction
 - Many patients have neither overt systolic dysfunction or evidence of reversible pulmonary endothelial dysfunction

Introduction

- Diastolic dysfunction likely remains in under-recognized cause of Fontan failure
 - -Pediatric Heart Network Fontan Cross-Sectional Study, 72% of patients had evidence of abnormal DD with normal EF
- Unlike the biventricular heart, established techniques such as echocardiogram are not well validated
- Invasive hemodynamic evaluations are frequently unrevealing
- Improved diagnostic criteria are necessary

Ains

- Primary aim
 - -To determine the association of echocardiographic measures of diastolic dysfunction with direct pressure measurements made by right heart catheterization before and after rapid fluid expansion
- Secondary aims
 - -Assess pressure changes in the Fontan circuit following volume expansion
 - -Identify any association of clinical status with diastolic dysfunction

Methods

- Single center, retrospective study
- Patients < 5 years post Fontan procedure at the time of catheterization were excluded
- Fontan patients with Doppler echocardiogram within 6 months of completing routine right heart catheterization from 8/17/20 to 11/22/21
- Diastolic dysfunction (DD) was defined as a post-bolus ventricular end-diastolic pressure (VEDP) of at least 15mmHg or >20% increase from baseline and greater than 12 mmHg
- Differences between groups was determined using Mann-Whitney U test or Fisher's exact where appropriate, correlation between variables was measured using Spearman's rho.

Demographic Data

	Total	No DD	DD
Demographics	n=20	n=10	n=10
Age	15.1 (9.5-21.1)	13.3 (10-17.9)	15.8 (12.6-22)
Sex (% female)	8 (40%)	5 (50%)	3 (30%)
Weight (kg)	55 (27.5-82)	42.1 (27.3-66.9)	73.1 (36.6-93.9)
Duration of Fontan to catheterization (vears)	12.4 (6.5-18.1)	10.6 (7.2-15.1)	12.7 (6.8-18.8)
Systemic ventricle morphology			
Left ventricle	9 (45%)	3 (30%)	6 (60%)
Right ventricle	14 (70%)	10 (100%)	4 (40%)
Type of Fontan			
Extracardiac Fontan	19 (95%)	9 (90%)	10 (100%)
Lateral tunnel	1 (5%)	1 (10%)	
Fenestration present	10 (50%)	7 (70%)	3 (30%)
Protein losing enteropathy	5 (20%)	4 (40%)	1 (10%)
Fontan-associated liver disease	5 (20%)	3 (30%)	2 (20%)

Results

	Total	No DD	DD
E wave (m/s)*	0.63 (0.52-0.78)	0.57 (0.48-0.66)	0.73 (0.56-1.02)
E/A ratio	1.0 (0.70-1.63)	0.91 (0.70-1.4)	1.14 (0.76-1.57)
DT (sec)*	0.18 (0.15-0.22)	0.15 (0.12-0.16)	0.22 (0.19-0.27)
Lateral e' (m/s)	0.08 (0.07-0.09)	0.082 (0.07- 0.087)	0.082 (0.074-0.085)
Lateral E:E'*	7.5 (6.6-9.2)	6.7 (5.4-9.0)	8.8 (6.5-11.1)
PV systolic velocity (cm/sec)	40.3 (20.1-47.4)	43.7 (30.6-47.5)	44.8 (37-45.9)
PV diastolic velocity (cm/sec)	67.9 (55.9-79.8)	73.7 (52.7-81.8)	62.1 (55.2-65.5)
PV S/D ratio	0.67 (0.57-1.0)	0.61 (0.53-0.98)	0.75 (0.6-1.6)
PV atrial reversal velocity (cm/sec)	23.3 (15.7-37.0)	25.2 (10.7-36.6)	18 (15-24.6)
PV atrial reversal duration	0.08 (0.07-0.1)	0.08 (0.04-0.11)	0.07 (0.04-0.11)

- Fluid expansion resulted in significant increase in Fontan pressure, PCWP, VEDP.
- There were <u>no</u> significant changes in TPG or PVR
- In multivariable logistics regression, patients with DD were independently associated with a decrease in CI after fluid expansion.

Results

	Total	No DD	DD
Hemodynamics			
Fontan pressure			
Baseline*	14 (11-16)	12 (10.3-13)	15.5 (15-16.8)
After RVE*	18 (14.2-20)	14.5 (12.3-16.8)	19.5 (18-20)
PCWP			
Baseline*	10 (7-12)	6.8 (6.1-7.9)	11.8 (10-12.9)
After RVE*	12.5 (11-15.5)	10.25 (8.5-11.1)	14.75 (13.1-15.9)
TPG			
Baseline	4 (3-5)	4 (3.5-5.6)	3.75 (3.5-4.8)
After RVE	3.5 (3-5)	4 (3-4.8)	3.5 (3-4.8)
VEDP			
Baseline*	8 (5-11)	5 (3.3-7.8)	11 (8-12)
After RVE*	11 (7-14)	8 (7-9)	14 (12-15)
CI			
Baseline*	3.1 (2.6-4.0)	4.0 (3.6-4.8)	2.6 (2.3-3.2)
After RVE*	3.3 (2.8-3.7)	4.5 (3.9-4.9)	2.4 (2-3.1)
PVRi			
Baseline	1.7 (1.2-2.1)	2 (1.3-2.3)	1.6 (1.3-1.9)
After RVE	1.6 (1.1-1.9)	1.7 (1.3-1.9)	1.3 (1.2-1.4)

Limitations

- Although statistically significant results were obtained, the study had a small number of patients.
- There were insufficient numbers to analyze the impact of ventricular type and morphology and other clinical factors on the echocardiographic and catheterization data.
- Patients with different anatomic diagnoses and ventricular morphology may affect Doppler values

- Diastolic dysfunction in patients with a Fontan circulation was associated with changes in lateral E:E' and deceleration time
- Abnormal diastolic function was independently associated with a lower CI regardless of pulmonary vascular resistance or transpulmonary gradient
- Large multi-center studies are needed to better define invasive and non-invasive measures of DD.

Sources

- 1. Alsaied T, Bokma JP, Engel ME, Kuijpers JM, Hanke SP, Zuhlke L, et al. Factors associated with long-term mortality after Fontan procedures: a systematic review. Heart. 2017;103(2):104-10.
- 3. Anderson PA, Sleeper LA, Mahony L, Colan SD, Atz AM, Breitbart RE, et al. Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study. J Am Coll Cardiol. 2008;52(2):85-98.
- 4. Averin K, Hirsch R, Seckeler MD, Whiteside W, Beekman RH, 3rd, Goldstein BH. Diagnosis of occult diastolic dysfunction late after the Fontan procedure using a rapid volume expansion technique. Heart. 2016;102(14):1109-14.
- 5. Peck D, Averin K, Khoury P, Veldhuis G, Hirsch R, Whiteside W, et al. Abstract 12343: Occult Diastolic Dysfunction is Associated With Adverse Clinical Outcomes in Adolescents and Young Adults With Fontan Circulation. Circulation. 2019;140(Suppl_1):A12343-A.
- 6. De Mey W, Cools B, Heying R, et al. Can a volume challenge pinpoint the limiting factor in a Fontan circulation?. Acta Cardiol. 2015;70(5):536-542. doi:10.2143/AC.70.5.3110514
- 7. Möller T, Klungerbo V, Diab S, et al. Circulatory Response to Rapid Volume Expansion and Cardiorespiratory Fitness in Fontan Circulation. *Pediatr Cardiol*. 2022;43(4):903-913. doi:10.1007/s00246-021-02802-yv
- 8. Margossian R, Sleeper LA, Pearson GD, Barker PC, Mertens L, Quartermain MD, et al. Assessment of Diastolic Function in Single-Ventricle Patients After the Fontan Procedure. J Am Soc Echocardiogr. 2016;29(11):1066-73.
- 9. Menon SC, Gray R, Tani LY. Evaluation of ventricular filling pressures and ventricular function by Doppler echocardiography in patients with functional single ventricle: correlation with simultaneous cardiac catheterization. J Am Soc Echocardiogr. 2011;24(11):1220-5.
- 10. Husain N, Gokhale J, Nicholson L, Cheatham JP, Holzer RJ, Cua CL. Noninvasive estimation of ventricular filling pressures in patients with single right ventricles. J Am Soc Echocardiogr. 2013;26(11):1330-6.
- 11. Cua CL, Moore-Clingenpeel M, Husain N, Holzer R, Cheatham JP, Gokhale J. Systolic/diastolic ratio correlates with end diastolic pressures in pediatric patients with single right ventricles. Congenit Heart Dis. 2019;14(4):609-13.

