

Balancing on 4 Pillars – Pharmacologic Approach to Heart Failure Management

Lee R Goldberg, MD, MPH, FACC
Section Chief, Advanced Heart Failure and Cardiac Transplant
Associate Chief Health Information Officer
Vice Chair of Medicine for Informatics
Professor of Medicine, University of Pennsylvania
ACC Trustee

Updated Guidelines – May 2022

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

© 2022 BY THE AMERICAN HEART ASSOCIATION, INC., THE AMERICAN COLLEGE OF
CARDIOLOGY FOUNDATION, AND THE HEART FAILURE SOCIETY OF AMERICA.

PUBLISHED BY ELSEVIER

VOL. 79, NO. 17, 2022

CLINICAL PRACTICE GUIDELINE: FULL TEXT

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

Evolution In The Approach to Heart Failure

Traditional Paradigm

- Heart Failure is a hemodynamic disorder
- Volume control is the cornerstone of therapy
- Patients "go into heart failure" but when symptoms improve they are "out of heart failure"
- Patients classified by NYHA class or functional capacity alone

Challenging Tradition

- NYHA class changes over time
- Heart failure is a cellular disease
- Despite symptomatic improvement neurohormonal, cytokine and cellular changes continue to occur and allow heart failure to progress
- Ejection Fraction (EF) does not correlate with functional capacity (NYHA class)

Shifting To a Chronic Disease Model – A Staging System

- The Heart Failure Staging system emphasizes:
 - Heart failure (ventricular dysfunction) is a chronic disease
 - Even in the absence of symptoms, activation of neurohormones and negative remodeling of the ventricle can occur leading to disease progression
 - Focusing on prevention of disease or disease progression has the biggest impact on both the patient and society
 - Specific risk factors can be identified and managed to prevent heart failure
 - Current medical and device therapies have <u>changed the natural</u> <u>history of heart failure and are most effective when initiated early</u>

Staging System

At Risk

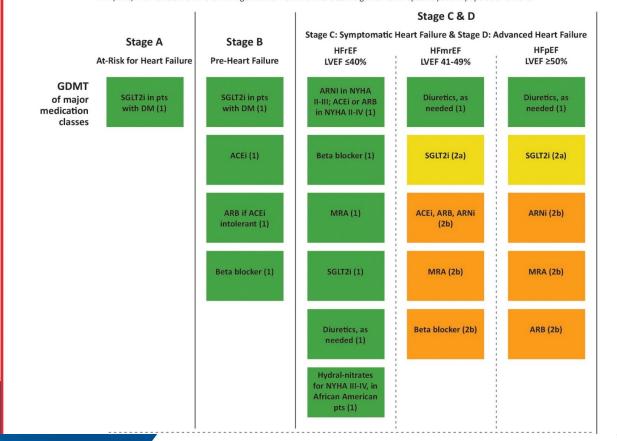
Pre HF

	ACCF/AHA Stage (course of disease)*		NYHA Functional Classification (symptoms at that moment)**	
sk	A	At high risk for HF but without structural heart disease or symptoms of HF	None	
łF	В	Structural heart disease but without signs or symptoms of HF	I	No limitation of physical activity; ordinary physical activity does not cause HF symptoms
	С	Structural heart disease with prior or current symptoms of HF	I	No limitation of physical activity; ordinary physical activity does not cause HF symptoms
			II	Slight limitation of physical activity; comfortable at rest, but ordinary physical activity results in HF symptoms
			III	Marked limitation of physical activity; comfortable at rest, but less than ordinary activity causes HF symptoms
			IV	Unable to carry on any physical activity without HF symptoms, or symptoms at rest
	D	Refractory HF requiring specialized interventions	IV	Unable to carry on any physical activity without HF symptoms, or symptoms at rest

New Definitions

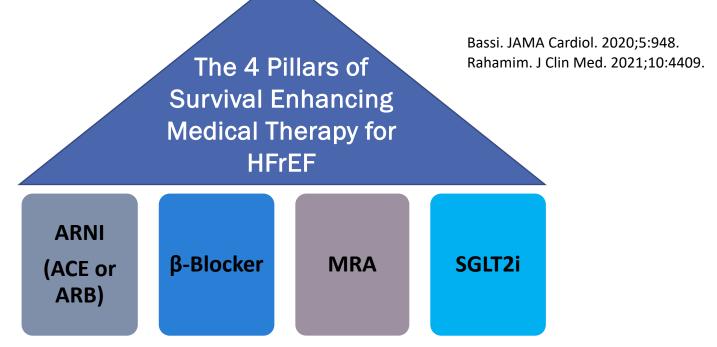
- HF with reduced ejection fraction (HFrEF) includes people with LVEF ≤40%.
- HF with improved ejection fraction (HFimpEF) includes individuals with previous LVEF ≤40% and a follow-up measurement of LVEF >40%.
- HF with mildly reduced ejection fraction (HFmrEF) includes people with LVEF 41-49% and evidence of increased LV filling pressures.
- HF with preserved ejection fraction (HFpEF) includes individuals with LVEF ≥50% and evidence of increased LV filling pressures.

HFrEF Update


- 4 Classes of drugs now recommended for all patients with HFrEF (LVEF <40%)
 - ARNI (Preferred) or ACE inhibitor or ARB
 - Beta Blocker (carvedilol, metoprolol succinate and bisoprolol)
 - Mineralocorticoid antagonist (spironolactone or eplerenone)
 - SGLT-2 inhibitor (empagliflozin or dapagliflozin) (with or without diabetes)
- Strategy start all 4 classes as quickly as possible then titrate doses
 - Consider adding all 4 classes as inpatient prior to discharge

CENTRAL ILLUSTRATION: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

Guideline Directed Medical Therapy Across Heart Failure Stages


Use this tool to reference guideline directed medical therapy (GDMT) across the four ACC/AHA stages of Heart Failure (HF) as outlined in the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. See the guideline for specific patient population criteria.

Primary therapies

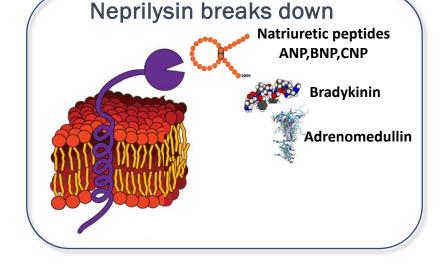
J Am Coll Cardiol.2022;79:e263-e421

4 Pillars of GDMT for Heart Failure

Cumulative risk reduction in all-cause mortality if all 4 evidence-based medical therapies are used

Relative risk reduction 72.9%; absolute risk reduction: 25.5%; NNT = 3.9, over 24 mo

Angiotensin Receptor Blocker/Neprilysin Inhibitor

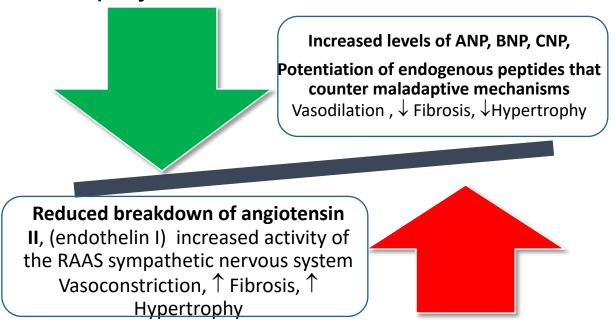


Neprilysin Inhibition in Cardiovascular Disease

Sacubitril is a neprilysin inhibitor

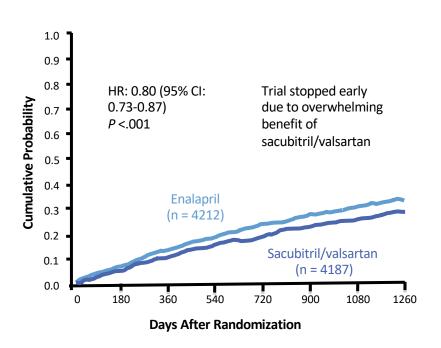
Neprilysin Inhibition

> Potentiation of beneficial peptides ANP, BNP, CNP, adrenomedullin



Counter maladaptive mechanisms

- Vasodilation
- ↓Fibrosis
- ↓ Hypertrophy


Balance of Neprilysin Inhibition

The antihypertensive effects may be offset by an increased activity of the RAAS and sympathetic nervous system and/or by downregulation of ANP receptors.

PARADIGM-HF — Reduction in CV Death or HF Hospitalization with sacubitril/valsartan

- Lower rates of discontinuation with sacubitril/valsartan due to AEs (P = .03) or renal impairment (P = .002)
- More symptomatic hypotension with sacubitril/valsartan (P < .001)
- Similar rates of angioedema, but:
 - Do not use with history of angioedema
 - Discontinue ACE inhibitor for ≥36 hours before starting
 - Can raise BNP levels but not NT-proBNP

Sacubitril/Valsartan Safety Considerations

Warnings and Precautions	Contraindications	Common AEs
 Fetal toxicity: discontinue if pregnant Monitor for angioedema and hypotension Monitor renal function and potassium in susceptible patients Initiate ≥36 hours after last ACE inhibitor dose 	 Hypersensitivity to sacubitril or valsartan History of angioedema with ACE inhibitor or ARB Concurrent use with ACE inhibitors Concurrent use with aliskiren in patients with diabetes 	 Hypotension Hyperkalemia Cough Dizziness Renal failure

Ponikowski. Eur Heart J. 2016;37:2129. Sacubitril/valsartan Pl. Yancy. Circulation. 2016;134:e282.

SGLT-2 Inhibitors

- Inhibitors of sodium–glucose cotransporter 2
- Lead to glucose increase in urine
- Diuretic effect
- Developed primarily for diabetes management

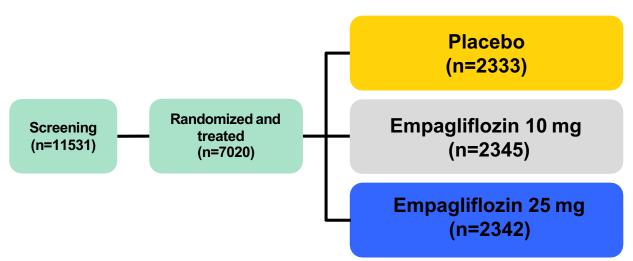
SGLT1 and SGLT2 Inhibitor

- **SGLT1** is the primary transporter for absorption of glucose and galactose in the GI tract
- Pharmacologic inhibition is independent of insulin and does not depend on kidney function
- Potential effects on atherosclerotic risks
- About 10% of glucose effect

SGLT2 is expressed in the kidney, where it reabsorbs 90% of filtered glucose

Glomerulus

Cortex


Collecting Duct

Distal convoluted tubule

Pharmacologic inhibition is independent of insulin but requires kidney function

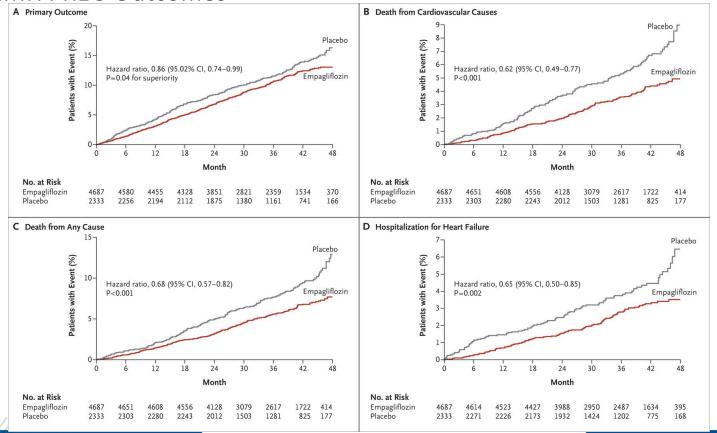
EMPA-REG OUTCOME – Design

Key inclusion criteria:

- Adults with type 2 diabetes and established CVD
- BMI ≤45 kg/m²; HbA1c 7–10%; eGFR ≥30 mL/min/1.73m² (MDRD)
- 10.2% of patients enrolled with pre-existing heart failure

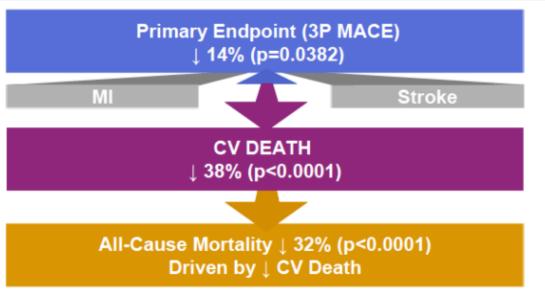
Primary outcome -death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke Key secondary outcome primary outcome plus hospitalization for unstable angina Primary hypothesis was **noninferiority** for the primary outcome

N Engl J Med. 2015 Nov 26;373(22):2117-28



EMPA-REG Outcomes – "Serendipity"

- The primary outcome occurred in a significantly lower percentage of patients in the empagliflozin group (490 of 4687 [10.5%]) than in the placebo group (282 of 2333 [12.1%]) (hazard ratio in the empagliflozin group, 0.86; 95.02% confidence interval [CI], 0.74 to 0.99; P<0.001 for noninferiority and P=0.04 for superiority)</p>
- The key secondary outcome occurred in 599 of 4687 patients (12.8%) in the empagliflozin group and 333 of 2333 patients (14.3%) in the placebo group (hazard ratio, 0.89; 95% CI, 0.78 to 1.01; P<0.001 for noninferiority and P=0.08 for superiority).


EMPA-REG Outcomes

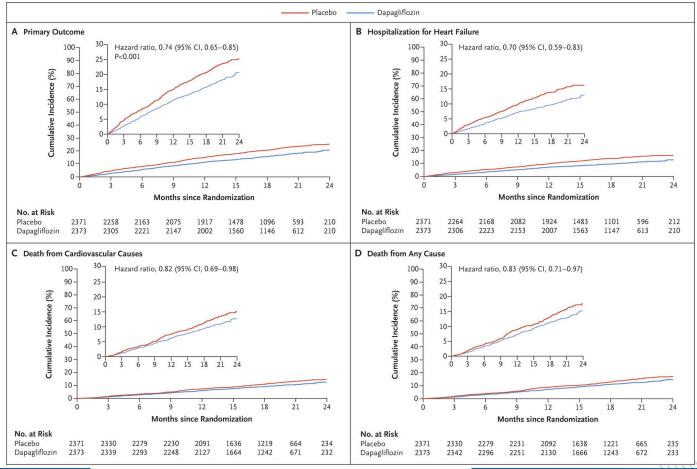
Serendipity

EMPA-REG OUTCOME Trial: Key Results

Heart Failure

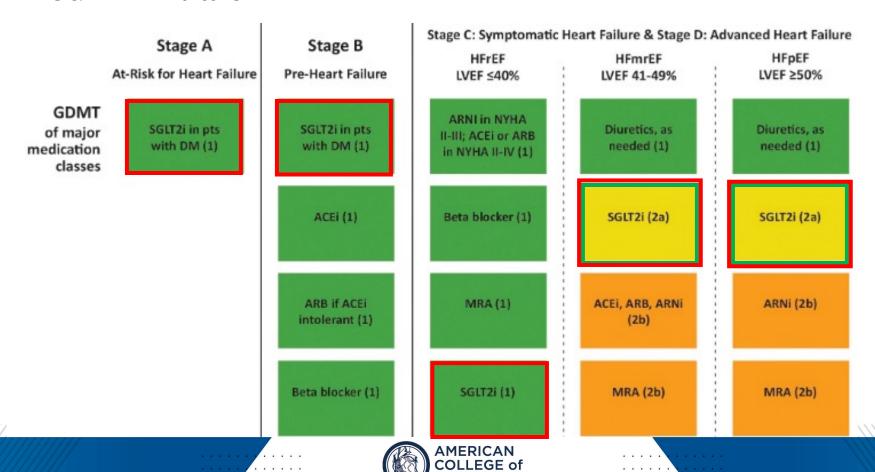
- Hospitalization for Heart Failure or CV Death

 34% (p<0.0001)



Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction – DAPA-HF

- Randomized, placebo-controlled trial, evaluating the effects dapagliflozin in patients with heart failure and a reduced ejection fraction with or <u>without</u> type 2 diabetes.
- The risk of worsening heart failure or cardiovascular death was lower among those who received dapagliflozin, regardless of the presence or absence of diabetes


DAPA-HF

N Engl J Med 2019; 381:1995-2008

SGLT2 Inhibitors

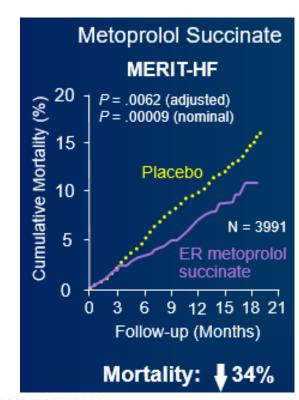
CARDIOLOGY.

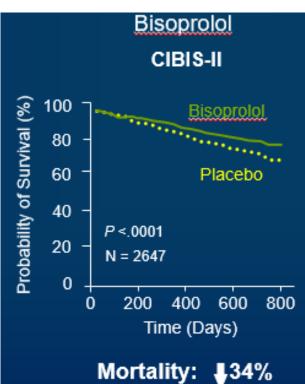
Adverse Effects of SGLT-2 Inhibitors

- Genital Fungal infections
- Serious genital infections Fournier's Gangrene
- Amputations seen with canagliflozin and ertugliflozin
- Euglycemic Ketoacidosis more common when fasting, acute changes in renal function or acute illness

 Developing guidelines to hold SGLT-2 inhibitors prior to surgical procedures or during acute hospitalizations

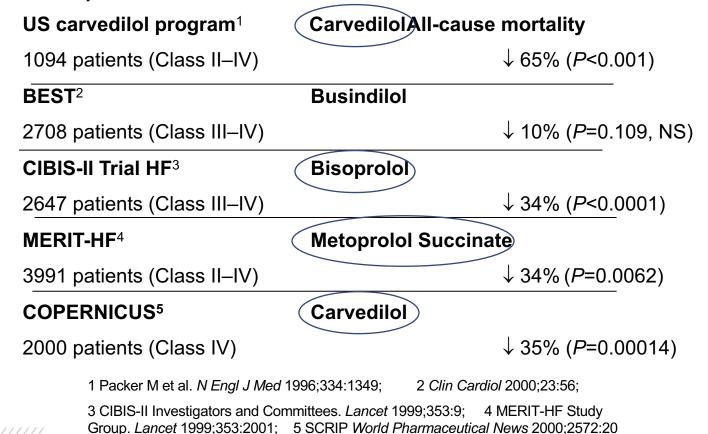
- Genital mycotic infections
- Fournier's gangrene
- Volume depletion
- Acute kidney injury
- Hypotension
- Increased LDL-cholesterol
- Increased hemoglobin and/or hematocrit
- Ketoacidosis
- Increased risk of lower limb amputations with canagliflozin and ertugliflozin; SGLT2 inhibitors should generally not be used in patients at risk for foot amputation
- Possible increased fracture risk
- Dapagliflozin is contraindicated for use in patients with active bladder cancer


Beta Blockers


- Effect
 - Inhibit the adverse effects of sympathetic system
 - Delays and reverses remodeling
- Clinical use: Heart failure with reduced ejection fraction
 - Given to all patients with HFrEF in absence of fluid overload
- Adverse effects
 - Hypotension, bradycardia, worsening HF
- Select <u>only evidence based</u> beta blockers
 - Metoprolol succinate
 - Carvedilol
 - Bisoprolol

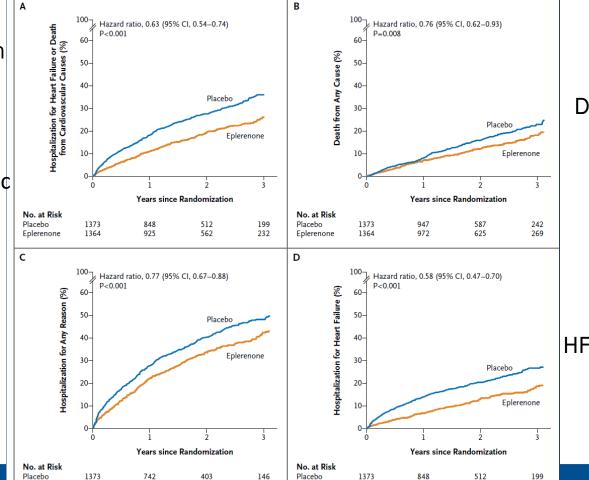
All have mortality data

Beta Blockers-Mortality Benefit HFrEF



Effects of β -Blockade on Mortality

Aldosterone Antagonists: Spironolactone/Eplerenone


- Improved mortality for class IIIB or class IV patients RALES Trial
- Creatinine < 2.5 in men < 2.0 in women and Potassium < 5.0
- More recent studies with eplerenone showed benefits in NYHA Class II to IV (Expanded indication)
- Contraindicated if on <u>both</u> ACE and ARB together due to risk of hyperkalemia
- Role of Fineronone to be defined but new data promising

HF Hospitalization or Death

Eplerenone in
Patients with Systolic
Heart Failure and
Mild Symptoms
(EMPHASIS-HF)

Hospitalization For Any Reason

Death Any Cause

HF Hospitalization

N Engl J Med 2011;364:11-21.

Eplerenone

1364

795

451

Figure 1. Cumulative Kaplan—Meier Estimates of Rates of the Primary Outcome and Other Outcomes, According to Study Group.

Eplerenone

1364

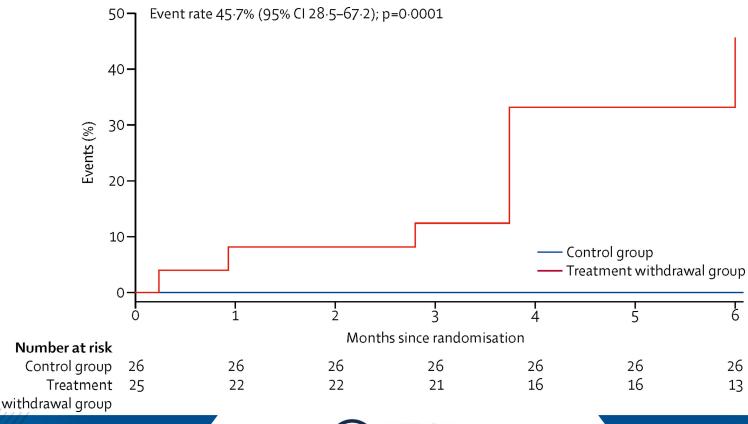
925

562

232

179

Heart Failure with Improved Ejection Fraction

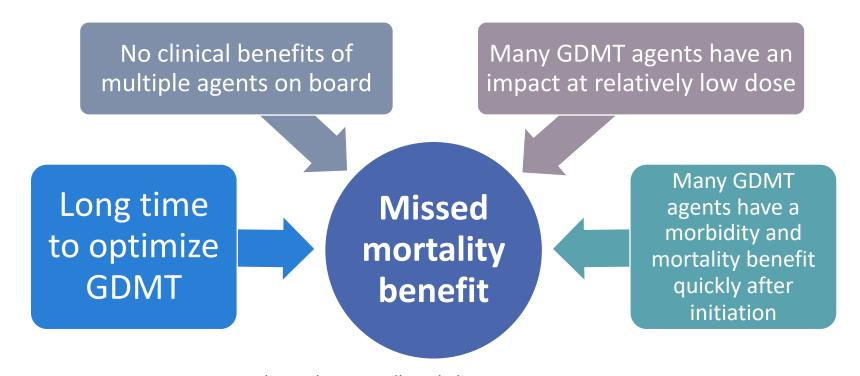

Improved LVEF is used to refer to those patients with previous HFrEF who now have an LVEF >40%

<u>These patients should continue their HFrEF treatment</u>
(At least ACE/ARB/ARNI and Beta Blocker)

TRED-HF Trial randomized patients with recovered LVEF to withdrawing medications versus continuing medications

TRED-HF Trial

The Lancet 2019 39361-73DOI: (10.1016/S0140-6736(18)32484-X)


Traditionally - Sequential Approach

- Typically started with a vasodilator to "unload" ventricle
- Titrated to maximally tolerated dose (more recently "low to moderate" dose)
- Beta blocker added
- Starting at low dose and titrating upward
- Additional medications added "if needed" for symptoms, blood pressure or heart rate control

Yancy. J Am Coll Cardiol. 2013:15;62(16):e147-239.

Consequences of Traditional Sequencing

Mebazaa. Lancet. 2022;400:P1938. Heidenreich. J Am Coll Cardiol. 2022;79:e263.

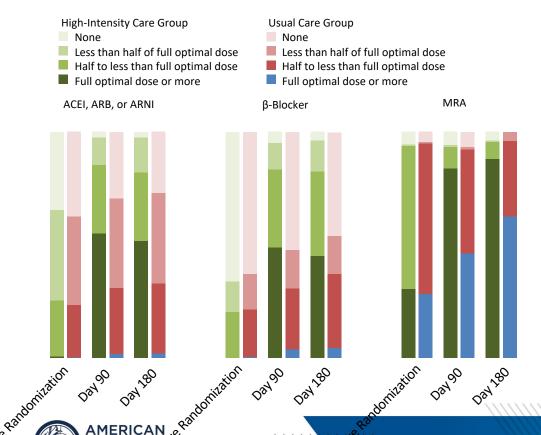
Is it safe to start all 4 classes quickly?

Strong HF Trial

 Multinational, multicenter, open-label, randomized, parallelgroup study designed to assess the safety and efficacy of up-titration of guideline-recommended heart failure medical therapy, including β blockers, angiotensin converting enzyme (ACE) inhibitors (or angiotensin receptor blockers [ARBs] if the patient was intolerant to ACE inhibitors) or angiotensin receptor-neprilysin (ARN) inhibitors, and mineralocorticoid receptor antagonists, on morbidity and mortality when initiated and up-titrated early after hospitalization for acute heart failure

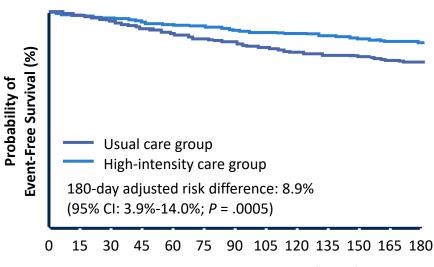
Mebazaa. Lancet. 2022;400:P1938.

The Intervention — High Intensity


- Algorithm combining optimization of oral heart failure therapies and frequent visits, including circulating NTproBNP measures, to assess congestion.
 - First dose adjustment occurred just after randomization (within 2 days before anticipated hospital discharge), when patients were prescribed medical therapy with β blockers, renin-angiotensin blockers (ie, ACE inhibitors [or ARBs if intolerant to ACE inhibitors] or ARN inhibitors), and mineralocorticoid receptor antagonists adjusted to at least half the optimal doses
 - Patients were assessed by the study team at 1, 2, 3, and 6 weeks after randomization

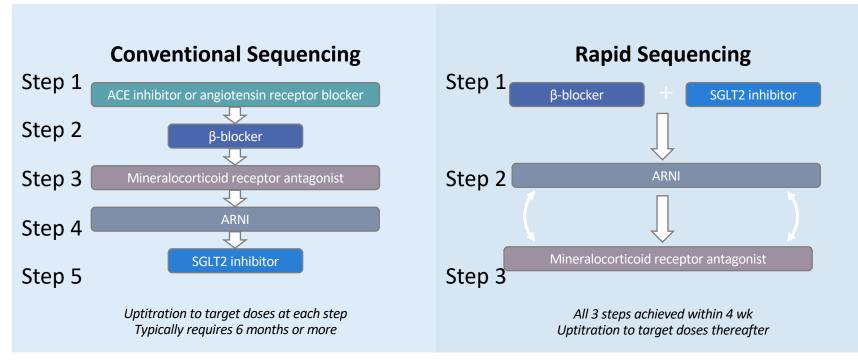
Mebazaa, Lancet. 2022;400:P1938.

STRONG-HF: Target GDMT Doses in High-Intensity vs Usual Care


- More patients in high-intensity group received target GDMT dosages at 90 days
 - ARNI/ACEI/ARB:55% vs 2%
 - β-blocker: 49% vs4%
 - MRA: 84% vs 46%

STRONG-HF: All-Cause Mortality

- More patients in high-intensity group felt better and lived longer
 - NYHA class I/II at 90 days: 83% vs 67%
 - Primary endpoint of reduction in death/HFH at 180 days: 15% vs 23%
 - Driven by HFH: 9.5% vs 17%


Terminated early because of larger than expected difference in groups; withholding intensive treatment strategy would be **unethical**

Time Since Randomization (Days)

The Need for Speed

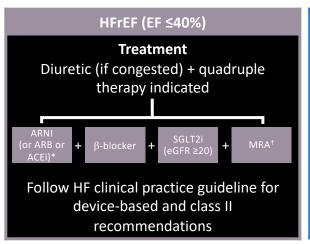
Packer. Eur J Heart Fail. 2021;23:882

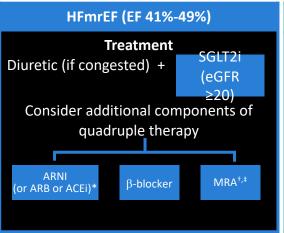
Why Is Rapid Initiation Important?

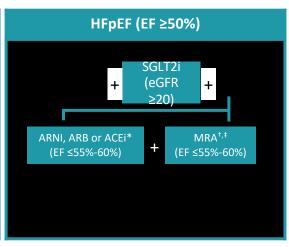
Medication Class	Outcome	Relative Risk
β-Blocker	Death	↓ 25%
ARNI	CV death or HF hospitalization	↓ 42%
MRA	CV death or HF hospitalization	↓ 37%
SGLT2i	Death, HF hospitalization, or emergency/urgent visit for worsening HF	↓ 58%

Clinical benefits of all medications are apparent within 30 days of initiation!

Greene. JAMA Cardiol. 2021;6:743.


Management of Heart Failure Summary


Manage Comorbid Disease


Lifestyle therapy

BP, lipid, and glucose control

ASCVD interventions as indicated

^{*}ARNI preferred over ARB or ACEi. †Spironolactone or eplerenone. Avoid eplerenone if eGFR ≤30 mL/min/1.73m², †If T2D + CKD with UACR ≥30 mg/g, use finerenone.

Handelsman. J Diabetes Complications. 2022;36:108101.

Call To Action

- Using all 4 classes of medications, when possible, can improve both morbidity and mortality for patients with HFrEF
- Include all 4 classes of medications as metrics in assessing the quality of HFrEF care
- Develop systems of care that promote initiation, titration and maintenance of all 4 classes of medications
 - Consider starting while in hospital for initiation
- Modify patient and family education to emphasize the importance of all 4 classes of medications

Barriers To Optimal Care for Heart Failure Patients

Personal Factors

- Lack of self-care knowledge
- HF-related negative emotions
- Difficulty of changing habits

Disease Burden

- Progressive physical decline
- Comorbid
 Conditions
- > Financial Strain

Inefficient Support System

- Inadequate social support
- Healthcare providers inattention to self-care
- ➤ Limited access to healthcare providers

J Caring Sci. 2020 Oct 20;10(4):196-204.

Initiating Pharmacotherapy—It's Complicated: The Impact of Comorbidities

- Comorbid conditions are common in patients with HF
 - 85% of patients have
 ≥2 additional chronic conditions
 - 42% of patients have
 ≥5 additional comorbidities

Sleep Apnea

Modified From: Chamberlain. Am J Med. 2015;128:38. Wong. Am J Med. 2011;124:136. Palazzuoli. Heart Fail Rev. 2022;27:767.

Consequences of Comorbidities

- May limit use of GDMT
 - Renal dysfunction
 - Autonomic dysfunction in diabetes
- Adds complexity and cost to medical regimens
- Complicates lifestyle recommendations
 - Diabetic/low-sodium/low-fat/fluid-restricted diets
- Affect frailty
- Compound risk of additional cardiovascular events

Comorbidities Drive Mortality and Hospital Admissions

Impact of Cumulative Number of Comorbidities on All-Cause Mortality or All-Hospitalization

AMERICAN

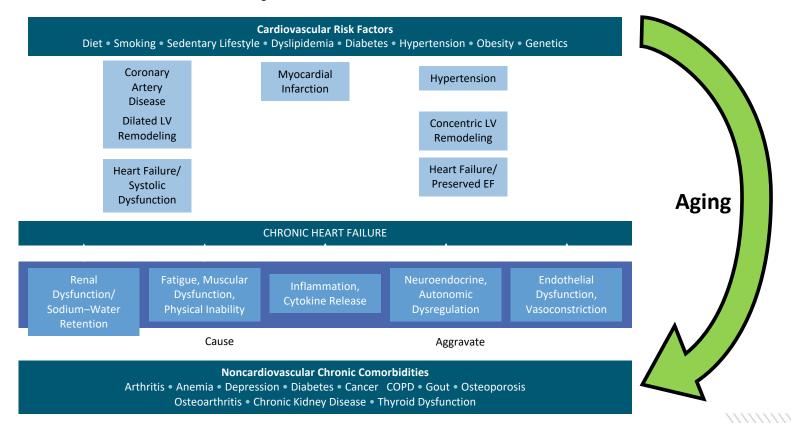
Common Comorbidities

Hypertension

- Lifestyle modifications
- Medication therapy

Anemia

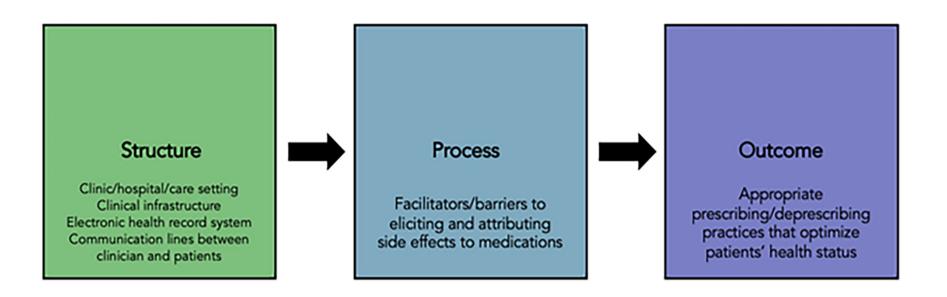
- Erythrocyte-stimulating agents
 - No clinical benefit
- IV iron
 - Improved outcomes


Sleep-Disordered Breathing

- Screening and treatment of OSA
- Avoid ASV in patients with HFrEF with central sleep apnea

Screever. Clin Res Cardiol. 2023;112:123.

Comorbidities May Exacerbate Heart Failure


Medications

Patient Factors

- Pill burden
- Side-effects
- Intended effects
 - Diuresis/Incontinence limiting travel
- Social roles
 - Caregiver for others
 - Burden
- Competing lifestyle advice
- Cost

Monitoring for Side Effects

Overcoming Patient Barriers

- Provide patient and care-giver education that accounts for health literacy and culture
- Include the "data" around the impact of core medical therapy
 - "Less likely to come into the hospital"
 - "Fewer symptoms"
 - "Survive longer"
- Empower patients to "control their disease"
- Using tools like daily weights or symptom assessments to allow for early detection of exacerbation of heart failure
- Leverage multidisciplinary teams that are diverse encourage patients and care-givers to "connect" with the team members to whom they can develop longer term relationships
- Encourage shared decision making

Cost Considerations

- Some of the core medications can have significant cost
 - SGLT-2 inhibitors, ARNI(?)
 - Non-core medications NOAC for anticoagulation, inhalers for COPD
- When asking about adherence be sure to inquire about the financial burdens of medical therapy
- Identify sources of financial assistance
 - Co-pay cards
 - Pharmaceutical assistance programs
 - Grants
 - Local resources
- May need to consider alternatives
 - ACE or ARB for ARNI

Challenging and time consuming

Can be delegated to other team members
if available

Multidisciplinary Teams

General HF multidisciplinary care

Advanced HF physician

Primary care physician

Nurse practitioner/physician assistant

Pharmacist (either cardiology or general medicine trained)

Psychologist

HF specialty nurse

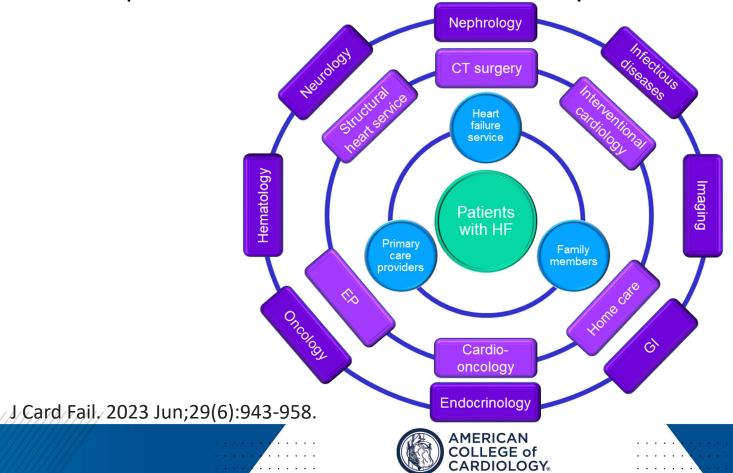
Transitions of care nurse

Dietician

Physical therapist

Social worker

Patient navigator


Palliative care provider

Home care

J Card Fail. 2023 Jun;29(6):943-958.

Comprehensive Heart Failure System of Care

Pulling It All Together

- **➤** Leverage EHR Tools
- Develop checklists,
 flowsheets, or pathways
 that best serve the clinic
 & population
- ➤ Measure performance to identify opportunities

- Develop a system to assess patients with heart failure at every visit
- Review GDMT and consider re-challenging if appropriate
- Reinforce education
- Ask about adherence
- Ask about side-effects
- Ask about any barriers cost, logistics, shifting caregiver roles
- Engage the larger team whenever feasible
- Encourage questions and concerns
- Engage in shared decision making
- Discuss goals and advanced care planning early in the course and re-evaluate especially following acute events
- Consider involving a heart failure multi-disciplinary team

EHR Tools

Make it easy to the "right" thing

*	Heart Failure "Tab" - Inpatient	Consolidates all the HF related data into a single place in the chart – meds, I/O, weights, LVEF, Labs
-\-	Heart Failure "Checklist"- Inpatient	Drive care by supporting initiation of GDMT with point of care guidance, standard orders and a dashboard
U	Templated HF visit notes- Outpatient	Capture data elements – NYHA class, weight, vital signs and medications Tools to assess side-effects and adherence
613	HF Flowsheet – Outpatient	Capture LVEF, NYHA class, weights, meds, labs longitudinally
	1 click referral to pharmacist, palliative	care, sleep medicine, EP

Conclusions

- Heart failure is a complex chronic disease that often is complicated by multiple comorbidities
- Rapid initiation of the 4 core heart failure therapies leads to the best outcomes
- Developing systems of care to manage heart failure facilitates the care of heart failure patients throughout the course of the disease
- Multidisciplinary teams improve heart failure outcomes and encourage patient self-management
- Measuring performance metrics enables identification of opportunities for improvement

Please evaluate this session using the QR Code

