

VA ECMO: Managing Complications, Integration of MCS Devices, De-Escalation of Care

F

Aaron G. Harris DNP APRN CCRN, Alexandra L. White RN BSN CCRN

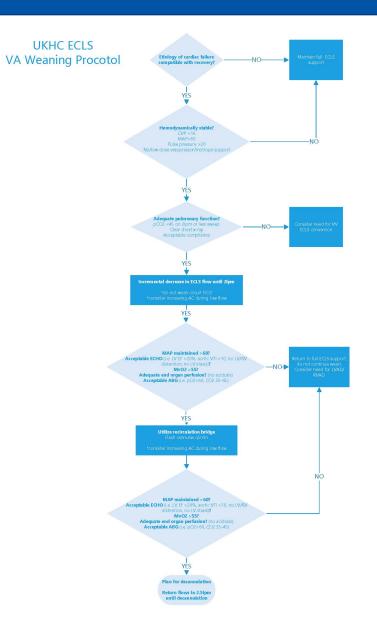
- 1. ECMO Weaning
- 2. ECMO Complications
- 3. MCS Device Integration in Conjunction with VA ECMO
 - 1. LAVA ECMO

No disclosures

UKHC ECMO Program

- Member of ELSO since 1994
- Designated Center of Excellence since 2012
- Currently providing ECLS support for
 - Neonatal
 - Pediatric
 - Adult

2020 Award Recipient



Weaning

- Gradual reduction in ECMO flows over several hours/ days
- Consider increasing anticoagulation regimen due to low circuit flow
- Strict observance of hemodynamic changes
- Inotropic support if needed
- TTE or TEE study for real time evaluation of myocardial recovery
- Trial off by placing a shunt into the ECMO circuit
- Decannulation by percutaneous closure of the artery or by direct cutdown and closure.

UK VA ECMO Weaning Protocol

ECMO Trial Off Bridge

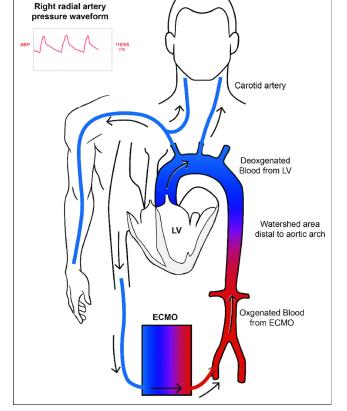
ECMO Complications

Circuit Concerns

- Mechanical Failures
- Thrombus in circuit
- Incorrect cannula positioning
- Oxygenator failure
- Pump malfunction
- Air in circuit
- Tubing rupture

Patient Concerns

- Bleeding
- Limb Ischemia
- Harlequin Syndrome
- MSOF
- Infection
- Exposure to Blood product transfusions
- Delirium
- Pain
- Arrythmias and Cardiac Arrest



North-South Syndrome

- Also known as Harlequin Syndrome
- Cardiac Output vs. ECMO Flow and the mixing cloud
- Indication of patient improvement?
- VA hybrid conversion

https://www.vanityfair.com/hollywood/2016/08/harley-quinn-suicide-squad-margot-robbie-domestic-violence

Center Specific Complications

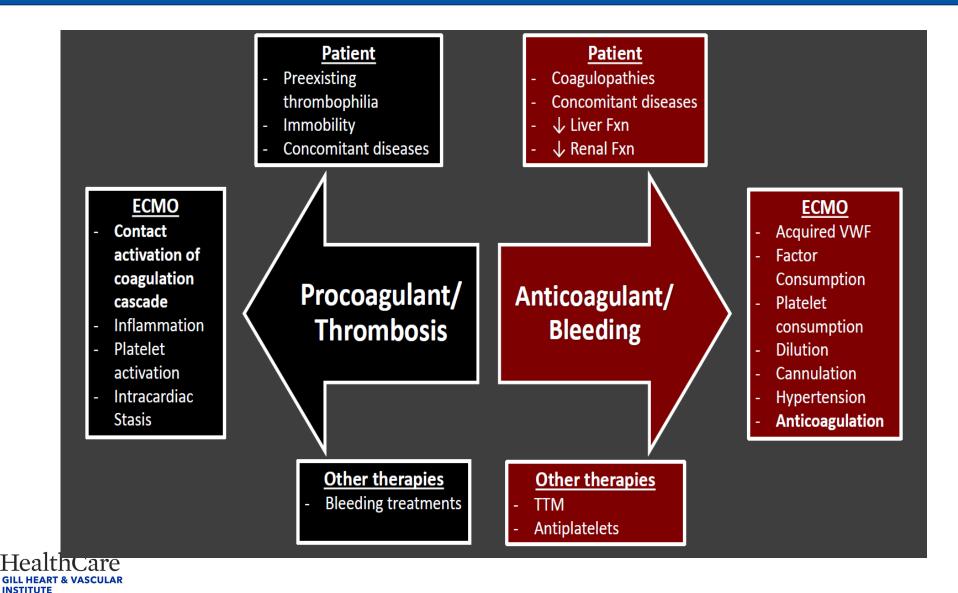
University of Kentucky Chandler Medical Center(111) Center Specific Summary - August, 2022


- Most common:
 - Oxygenator Failure
 - Circuit Change
 - CRRT use and increased creatinine
- Largest effect on Survival
 - Limb Ischemia
 - Surgical Site bleeding
 - Cardiac Arrythmia

	No Reported	% Reported	Survived	% Survived
Mechanical: Oxygenator failure	7	2.7%	1	14%
Mechanical: Cannula problems	3	1.2%	1	33%
Mechanical: Circuit change	14	5.4%	4	29%
Mechanical: Thrombosis/Clots: circuit component	6	2.3%	2	33%
Hemorrhagic: GI hemorrhage	7	2.7%	1	14%
Hemorrhagic: Cannulation site bleeding	1	0.4%	0	0%
Hemorrhagic: Surgical site bleeding	15	5.8%	6	40%
Hemorrhagic: Peripheral cannulation site bleeding	4	1.6%	0	0%
Neurologic: Brain death	1	0.4%	0	0%
Neurologic: Seizures Confirmed by EEG	1	0.4%	1	100%
Neurologic: CNS Infarction (US or CT or MRI)	12	4.7%	1	8%
Neurologic: CNS diffuse ischemia (CT/MRI)	2	0.8%	0	0%
Renal: Creatinine 1.5 - 3.0	81	31.4%	28	35%
Renal: Creatinine > 3.0	41	15.9%	11	27%
Renal: Renal Replacement Therapy Required	76	29.5%	14	18%
Cardiovascular: Inotropes on ECLS	19	7.4%	6	32%
Cardiovascular: CPR required	5	1.9%	1	20%
Cardiovascular: Cardiac arrhythmia	23	8.9%	4	17%
Cardiovascular: Tamponade (blood)	3	1.2%	1	33%
Pulmonary: Pulmonary hemorrhage	1	0.4%	0	0%
Infectious: Culture proven infection (see Infections)	1	0.4%	0	0%
Infectious: WBC < 1,500	11	4.3%	2	18%
Metabolic: pH < 7.20	1	0.4%	0	0%
Metabolic: Hyperbilirubinemia	18	7%	5	28%
Metabolic: Moderate hemolysis	7	2.7%	2	29%
Metabolic: Severe hemolysis	2	0.8%	1	50%
Limb: Ischemia	4	1.6%	1	25%
Limb: Compartment Syndrome	4	1.6%	0	0%
Limb: Fasciotomy	9	3.5%	0	0%
Limb: Amputation	2	0.8%	0	0%

Adult Cardiac Complications from 2017 to Present

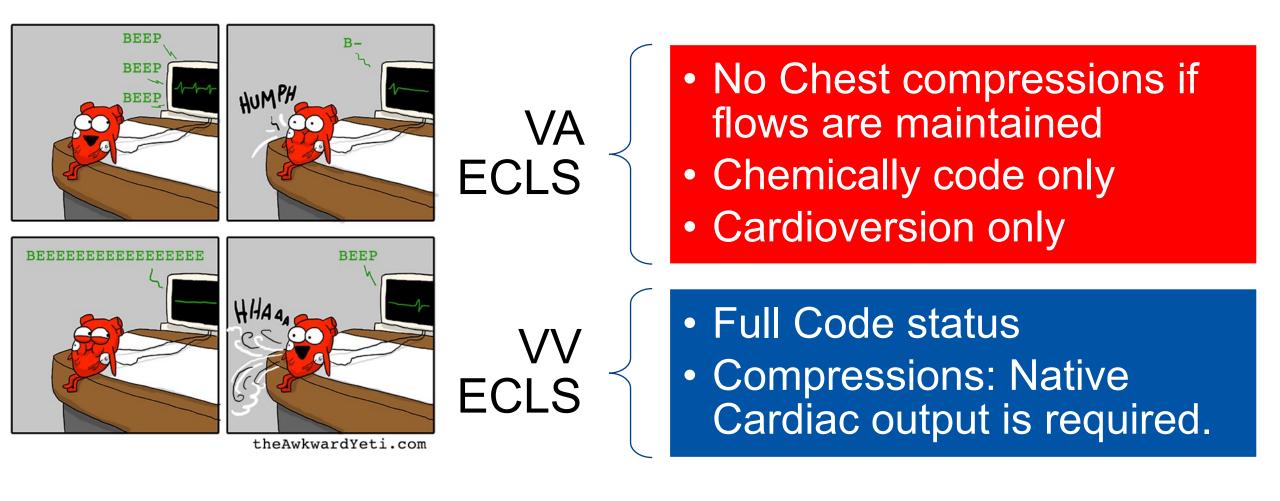
CRRT in tandem with **ECMO**



Bleeding

- Concerns of internal vs. external bleeding
 - Surgical incisions
 - Cannulation site bleeding
 - Retroperitoneal Bleeding
 - Stroke
- Use of Anticoagulation during and post cannulation
 - Heparin vs Bivalrudin
 - Bolus strategies
 - No AC strategy

Hemostasis in the ECLS Patient


Clots!

Cardiac Arrest

ECMO Emergencies *Air Embolism*

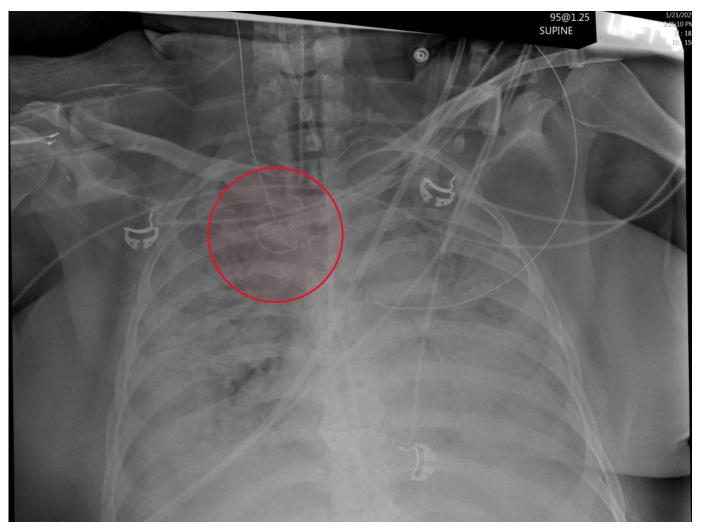
Potential

Causes

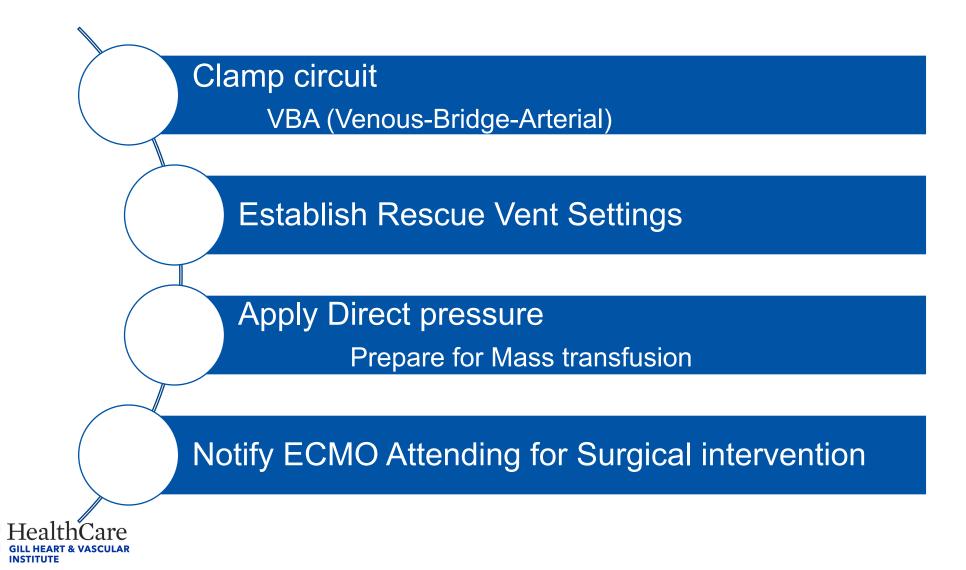
- **Open Stockcocks**
- Cracks in connectors or tubing
- Oxygenator Gas leak

Interventions

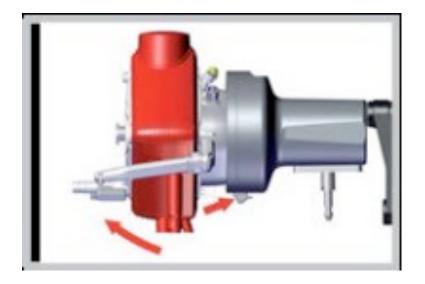
- Clamp circuit immediately
- Place Patient in Trendelenburg position
- Maximize Ventilator support
- Use inotropic/vasopressor support
- Get the air OUT! ASAP



Air Embolism



Watch out for the wires



ECMO Emergencies *Accidental De-cannulation*

Emergency Backup

- Only for console Power failure
- Turn Handcrank in Clockwise
 position
- Maximum speed is controlled by operator
- Monitor LED speed while performing manual propulsions
- Clamp lines while not actively handcranking to avoid retrograde Flow
 - Note: If CRRT is running in tandem with the ECLS Circuit, You *MUST* Clamp the Manifold / shunt Off prior to Handcranking

LV Unloading Strategies

- LV Vent
- IABP
- Impella
 - CP
 - 2.5

Considerations with Impella vs IABP

Impella

- P-level considerations
- Weaning ECMO and
 Increasing Impella Support
- Which do you remove first?

IABP

- Auto vs. Semi-Auto
- Cardiac Stun patients

LAVA ECMO

- LV Unloading with VA ECMO
- Prevents complications of
 - Lung Edema
 - LV Thrombosis

- Eventual RV failure or Biventricular failure
- Drainage of the LA, RA, and LSPV
 - Transeptal Puncture
- Similar to VA ECMO + Impella support

Any Questions?

