VA ECMO 101: Indications, Configurations, Management Targets During Treatment

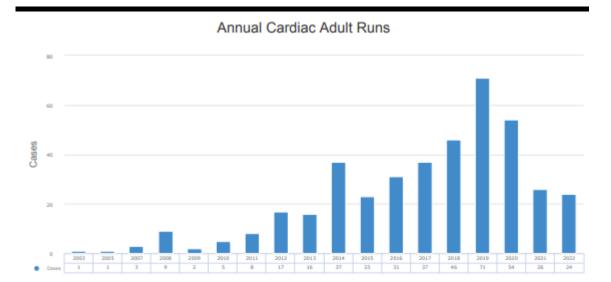
Objectives

- Indications for VA ECMO
- How does VA ECMO work?
- What needs to be monitored?

No disclosures

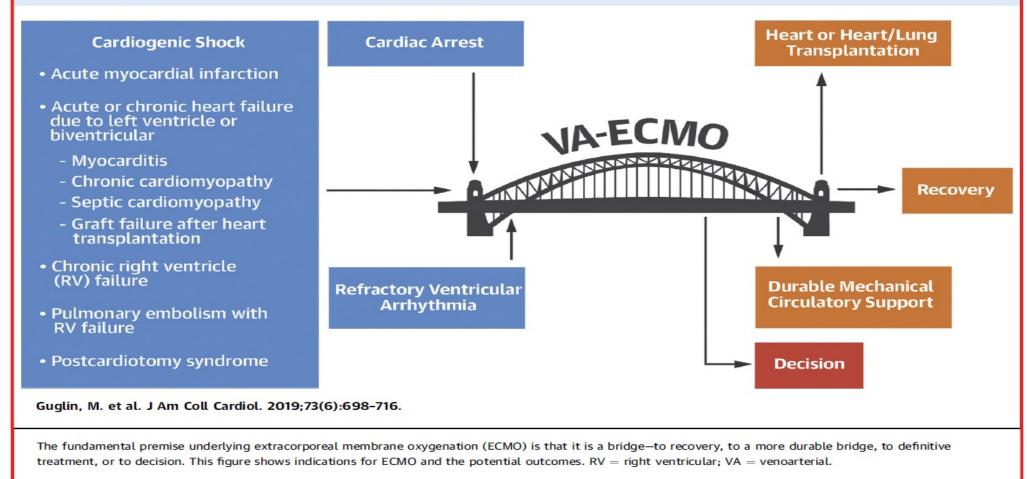
UKHC ECMO Program

- Member of ELSO since 1994
- Designated Center of Excellence since 2012
- Currently providing ECLS support for
 - Neonatal
 - Pediatric
 - Adult


2020 Award Recipient

UK VA ECMO 2022 Data

- 38 adult runs
- 2 transports
- ALOR 3.92 days (median = 3, IQR = 5)
- ALOS 15.42 days (median = 12, IQR = 18.25)
- CRRT Use 23.7%

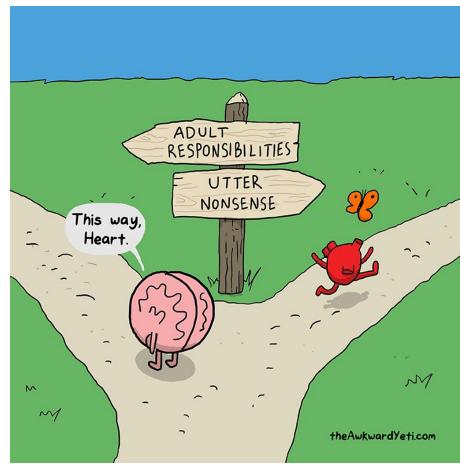


- Run survival 47.37%
- Discharge survival 34.21%

What is the point?

CENTRAL ILLUSTRATION VA-ECMO Is a Bridge

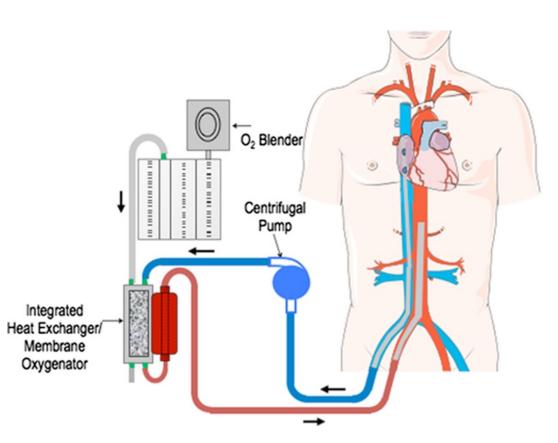
Indications for VA ECMO


- Cardiogenic shock
 - Acute massive pulmonary embolism
 - Acute MI
 - Post heart transplant/LVAD
 - Post cardiotomy with failure to separate from CPB
 - Post partum cardiomyopathy
 - Drug Intoxication
 - Sepsis associated cardiomyopathy
 - Trauma
 - Myocarditis
 - Bridge to transplant
 - ECPR salvage as bridge to treatment or decision

(ELSO Guidelines 2021)

Contraindications

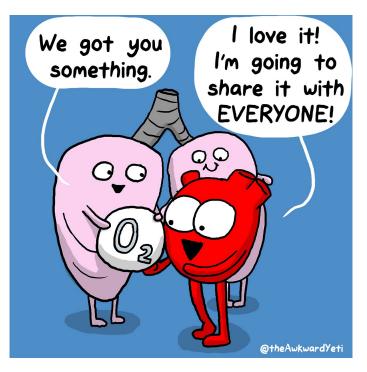
- Absolute:
 - Non-recoverable cardiac dysfunction
 - Non- recoverable neurological disease
 - Active Malignancy
 - Existing Multi-organ failure
 - Prolonged mechanical ventilation >7-10 days
 - Aortic Dissection and/or Aortic Valve dysfunction
 - Unwitnessed cardiac arrest or CPR >60 minutes
- Relative:
 - Age, comorbidities, poor end points



Function of ECMO

9

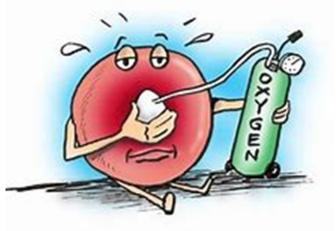
- ECMO can serve as a bridge to recovery, a destination therapy, or decision
- Oxygen Delivery and CO2 Removal
 - Draining venous blood
 - Adding oxygen and removing CO2 through an artificial lung to support normal aerobic metabolism
 - Return warmed, oxygenated blood to the arterial circulation.
- Preload dependent and afterload sensitive (centrifugal pump) paired with membrane oxygenator



Oxygen Delivery

10

- Normal O2 delivery is 4-5 times more than amount of O2 consumption.
- DO2 = [1.36 x Hb x SaO2 + (0.003 x PaO2)] x Q
- Delivery of oxygen (DO2) to the tissues is determined by:
 - The amount of oxygen in the blood
 - The oxygen binding capacity of hemoglobin (1.36)
 - The hemoglobin (Hb)
 - The saturation of hemoglobin
 - The amount of dissolved oxygen in plasma (.003) AND PaO2
 - The Cardiac Output (CO).

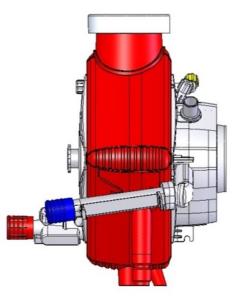


https://theawkwardyeti.com/comic/oxygen/

Oxygen Consumption

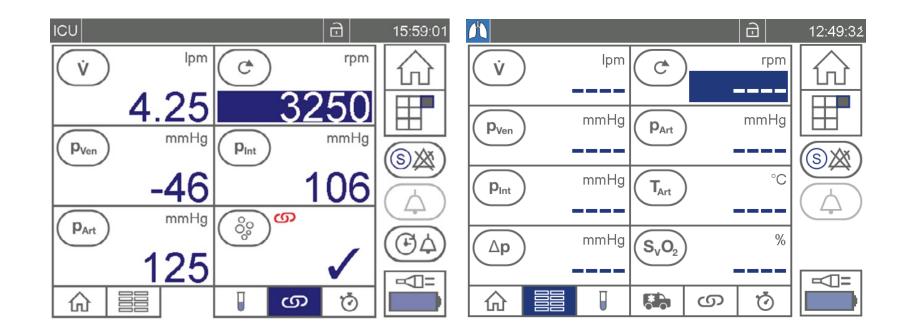
- VO2 is the maximum capacity of an individual's body to transport and use oxygen.
 - VO2 = Q x (CaO2-CvO2) mIO2/min
 - The CnO2 is (1.34 x Hb x SnO2/100) + 0.003 x PnO2, where n = a or v
 - VO2 is controlled by tissue metabolism.
 - VO2 is decreased by rest, paralysis, hypothermia
 - VO2 is increased by muscle activity, infection, seizures, hyperthermia, increased level of catecholamine's and thyroid hormone

11


https://www.doctorramey.com/should-horse-be-taking-vitamins/oxygen-delivery/

CardioHelp ECLS System

Control Console


Disposable Component

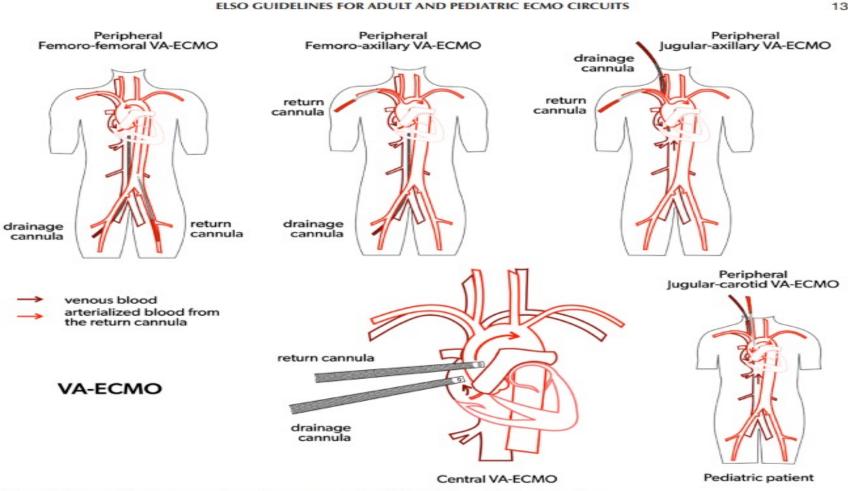
12

CardioHelp Display Screen

ECLS Equipment

14

- Maquet Rotoflow Centrifugal Console
- Flow Capability 9.9 LPM


Thoratec Centrimag Console

Veno-Arterial ECMO Cannulation

16

Different Sites for VA ECMO Cannulation

Arterial Cannula	Location of Mixing	Arterial Catheter Site	Comments
Right Common Carotid	Aortic Arch	Avoid Right Radial	Right radial blood gases inaccurate due to sampling of immediate downstream arterialized blood
Right Axillary	Aortic Arch	Avoid Right Radial	Right radial sampling may not be reflective of circulation in other areas of body
Left Axillary	Aortic Arch	Avoid Left Radial	Left radial sampling may not be reflective of circulation in other areas of body
Femoral	Variable	Prefer Right Radial	Right radial helps detect North- South problems
Aorta	Aortic Root	Any	

ECLS Distal Perfusion

- Prevents lower limb ischemia in peripheral VA ECMO
- 5fr-9fr catheter shunt
- Supplies moderate flows
- Requires extra monitoring when moving patient

Summary of Monitoring for VA ECMO

	Monitor For:	Treatment:
Rhythm	Dysrhythmias may impair ventricular ejection	 Antiarrithmyics Cardioversion Pacing Ablation
MAP (mean arterial pressure)	Hypotension Hypertension	Adjust ECMO FlowsVasopressorFluid bolus
Pulsatility	Lack of pulsatility:i. Poor myocardial functionii. Excessive VA supportiii. Inadequate preloadiv. RV Failure	 Adjust ECMO Flows Add MCS support device Start Inotrope Decompression

	Monitor For:	Treatment:
ECMO Flow	 Low flow: i. Inadequate preload- fluid status vs mechanical obstruction ii. Excessive Afterload iii. Inadequate RPMs 	 Volume bolus Relieve mechanical obstruction Increase RPMs
GAS exchange	 i. Inadequate pO2 or excessive CO2 elimination ii. Oxygenator function iii. Upper body hypoxemia 	 Adjust ECMO flows for pO2 Adjust Sweep gas for CO2 Assess pre/post oxygenator gas for oxygenator function Consider configuration change to VV or V-VA

Image retrieved from: https://www.google.com/imgres?imgurl=https%3A%2F%2Fmechanicbase.com%2Fwp-content%2Fuploads%2F2019%2F06%2FRPM-limite1610406047553.jpg&imgrefurl=https%3A%2F%2Fmechanicbase.com%2Ftransmission%2Fslipping-clutch-symptoms%2F&tbnid=fVsnj8SHRIgzM&vet=12ahUKEwj6rsLTyND5AhWdkWoFHTcTC4wQMygOegUIARDIAQ..i&docid=QFCDxmtYAAypwM&w=1000&h=460&q=increase%20RPMs&ved=2ahUKEwj6rsLTyND 5AhWdkWoFHTcTC4wQMygOegUIARDIAQ

	Monitor For:	Treatment:
Oxygen Delivery	Decreasing SVo2 and rising Lactate H/H Signs of increasing consumption	 Increase ECMO flow Transfuse PRBC Antipyretics Consider paralytics
Distal Limb Ischemia	Pulses cannulated limb- cyanosis, coolness, oximetry	 Placement of anterograde perfusion catheter
Anticoagulation	Depending on anticoagulant monitor appropriate lab work- aPTT/anti-Xa	
Temperature	Patient temperature	Water heater unit attached to ECMO circuit for temperature control

• Thank you for your time and attention

 Lorusso, R., Shekar, K., MacLaren, G., Schmidt, M., Pellegrino, V., Meyns, B., Haft, J., Vercaemst, L., Pappalardo, F., Bermudez, C., Belohlavek, J., Hou, X., Boeken, U., Castillo, R., Donker, D. W., Abrams, D., Ranucci, M., Hryniewicz, K., Chavez, I., ... Whitman, G. (2021). Elso interim guidelines for venoarterial extracorporeal membrane oxygenation in adult cardiac patients. *ASAIO Journal*, *67*(8), 827–844. https://doi.org/10.1097/mat.000000000001510

