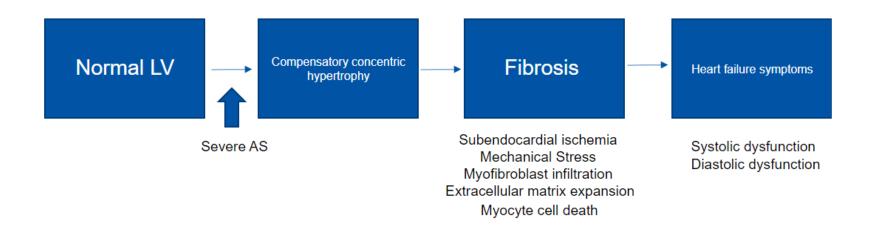
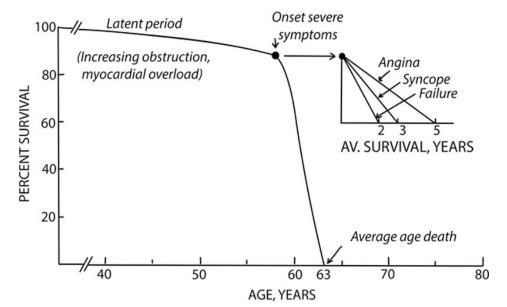


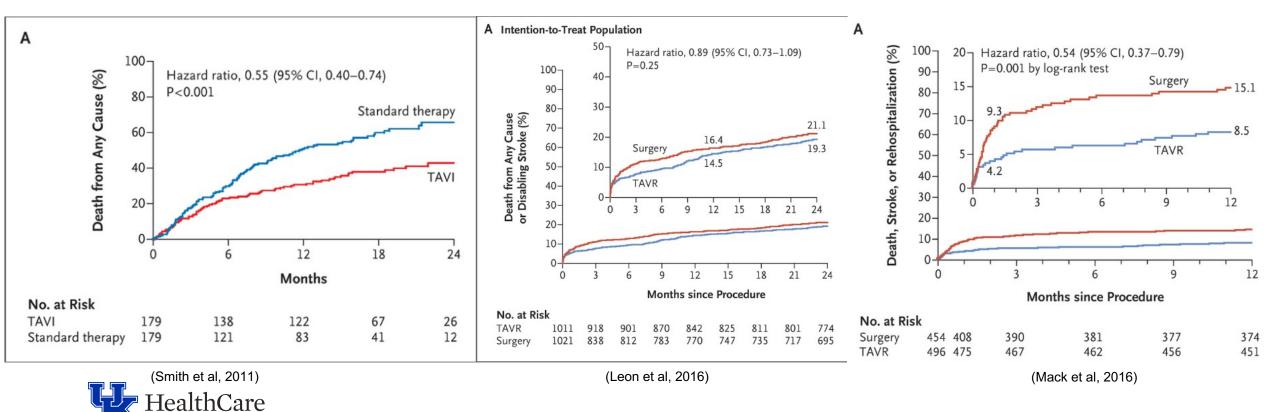
Changes in Ventriculo-arterial coupling and Valvulo-arterial impedance in patients with Transcatheter Aortic Valve Implantation for Severe Aortic Stenosis


Ranjan Banerjee, MD PGY-6, Cardiology KY ACC Conference 9/10/2022



BACKGROUND

Left Ventricle in Severe Aortic Stenosis



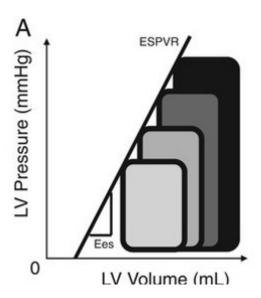
Ross J, Braunwald E. Aortic stenosis. Circulation. 1968; 37/38(suppl V): V-61-V-

TAVI for AS

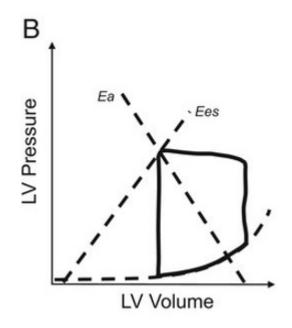
- Aortic valve replacement has tempered this outcome
- Transcatheter aortic valve replacement (TAVI) has emerged over the past 10-15 years as a good option for many patients

AVR and LV function in Severe AS

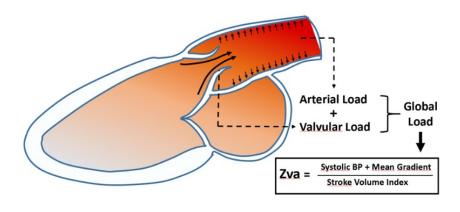
1	Α	 In adults with severe high-gradient AS (Stage D1) and symptoms of exertional dyspnea, HF, angina, syncope, or presyncope by history or on exercise testing, AVR is indicated.^{1–7}
1	B-NR	2. In asymptomatic patients with severe AS and an LVEF <50% (Stage C2), AVR is indicated.8-11



Ventriculo-Arterial Coupling (VAC) and Valvulo-Arterial Impedance (Zva)


(Normal 0.5 - 1.0)

End-Systolic Elastance (Ees) Load independent measure of contractility


$$E_{es(sb)} = [P_d - (E_{Nd(est)} \times P_s \times 0.9)]/[SV \times E_{Nd(est)}]$$
(Chen et al. 2001)

Effective Arterial Elastance (Ea) Index of Afterload

Ea = End-systolic pressure/ Stroke volume = (SBP x 0.9) / Stroke Volume

Zva

Estimate of global LV hemodynamic load, made up of

- Stenosis severity
- Volume flow rate
- Body Size
- Systemic Vascular resistance

Low: Zva ≤3.5

Moderate: 3.5 < Zva < 4.5

High: Zva ≥ 4.5

(Hachicha et al, 2009)

Rationale and Objectives

Rationale: Describing how the LV and systemic vasculature interact with eachother in severe AS may better identify patients how would benefit from TAVI

Objectives: Describe the change in VAC and Zva pre-and-post TAVI in patients with severe aortic stenosis

DESIGN AND METHODS

Design and Methods

Design:

Retrospective cohort study

Methods:

- 100 patients randomly chosen from pre-existing database of all TAVIs done at UK Healthcare between 2012 and 2021
- Transthoracic echocardiograms (pre-TAVI and 1-3 month post-TAVI follow up), and TAVI CTs reviewed
- Zva and VAC calculated using previously validated noninvasive techniques

Statistics:

- The mean values for each of these measurements were compared using a paired T-test
- A p-value of ≤ 0.05 was chosen to characterize a significant difference in mean values for each variable measured.

Systolic/Diastolic Blood Pressure – At time of echocardiogram

Mean Gradient – across aortic valve

• If Atrial fibrillation, average of 3 measurements taken

Stroke Volume – calculated using the LVOT-VTI method

- LVOT diameter measured on pre-TAVR CT scan
- VTI of flow calculated through LVOT on TTE
- If atrial fibrillation, average of at least 3 measurements

Cardiac Output = SV_(LVOT VTI Method) x HR (at time of LVOT-VTI measurement)

	Pre (N=100)	Post (N=100)	P-value
LVEF			
Mean (SD)	0.581 (0.138)	0.564 (0.145)	0.196
Median [Q1, Q3]	0.580 [0.501, 0.659]	0.576 [0.451, 0.676]	
Ees			
Mean (SD)	1.76 (0.674)	1.49 (0.688)	< 0.001
Median [Q1, Q3]	1.66 [1.27, 2.18]	1.38 [0.933, 1.92]	
Ea			
Mean (SD)	1.65 (0.519)	1.80 (0.792)	0.0229
Median [Q1, Q3]	1.58 [1.28, 1.99]	1.70 [1.40, 1.98]	
Ea/Ees			
Mean (SD)	1.02 (0.387)	1.42 (0.810)	< 0.001
Median [Q1, Q3]	0.927 [0.764, 1.24]	1.16 [0.955, 1.65]	
Cardiac Output			
Mean (SD)	5.31 (1.60)	5.47 (1.91)	0.358
Median [Q1, Q3]	4.98 [4.30, 6.31]	5.06 [4.31, 6.48]	
MAP			
Mean (SD)	91.1 (12.5)	94.8 (11.8)	0.0158
Median [Q1, Q3]	89.8 [83.0, 98.8]	95.1 [86.6, 102]	
SV			
Mean (SD)	52.6 (21.3)	51.4 (20.2)	0.589
Median [Q1, Q3]	46.9 [38.5, 64.1]	49.4 [35.2, 65.3]	

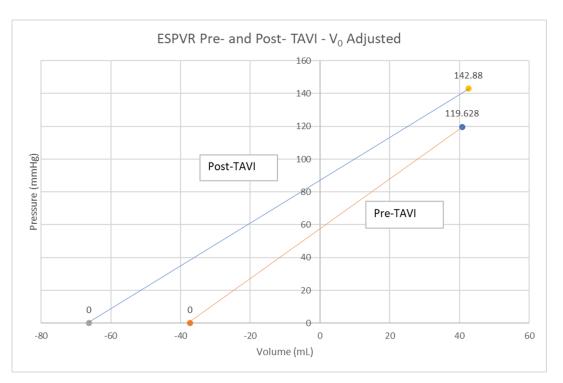
	Pre (N=100)	Post (N=100)	P-value
SVR			
Mean (SD)	1410 (456)	1490 (619)	0.131
Median [Q1, Q3]	1340 [1130, 1640]	1400 [1100, 1680]	
SBP			
Mean (SD)	133 (19.4)	144 (23.5)	< 0.001
Median [Q1, Q3]	134 [117, 146]	141 [129, 160]	
MG			
Mean (SD)	47.7 (13.5)	10.7 (4.59)	< 0.001
Median [Q1, Q3]	45.0 [40.9, 51.3]	10.0 [8.00, 13.3]	
ZVA			
Mean (SD)	4.89 (1.48)	4.19 (1.81)	< 0.001
Median [Q1, Q3]	4.70 [3.80, 5.71]	3.77 [3.11, 4.84]	

LVEF: Left ventricular ejection fraction. Ees: End-systolic elastance. Ea: Arterial elastance. MAP: Mean arterial pressure. SV: Stroke Volume. SVR: Systemic vascular resistance. SBP: sytolic blood pressure. MG: mean aortic valve gradient. ZVa: Valvulo-arterial impedance

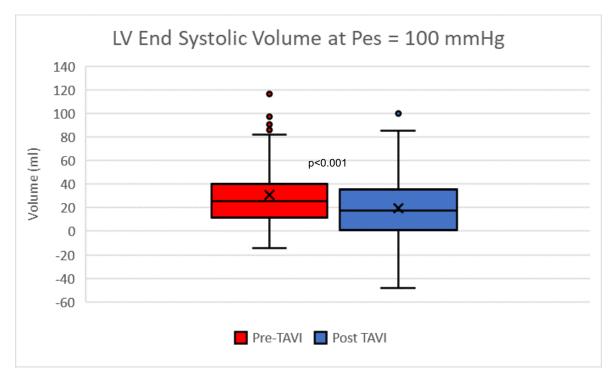
	Pre (N=100)	Post (N=100)	P-value
LVEF			
Mean (SD)	0.581 (0.138)	0.564 (0.145)	0.196
Median [Q1, Q3]	0.580 [0.501, 0.659]	0.576 [0.451, 0.676]	
Ees			
Mean (SD)	1.76 (0.674)	1.49 (0.688)	<0.001
Median [Q1, Q3]	1.66 [1.27, 2.18]	1.38 [0.933, 1.92]	
Ea			
Mean (SD)	1.65 (0.519)	1.80 (0.792)	0.0229
Median [Q1, Q3]	1.58 [1.28, 1.99]	1.70 [1.40, 1.98]	
Ea/Ees			
Mean (SD)	1.02 (0.387)	1.42 (0.810)	<0.001
Median [Q1, Q3]	0.927 [0.764, 1.24]	1.16 [0.955, 1.65]	
Cardiac Output			
Mean (SD)	5.31 (1.60)	5.47 (1.91)	0.358
Median [Q1, Q3]	4.98 [4.30, 6.31]	5.06 [4.31, 6.48]	
MAP			
Mean (SD)	91.1 (12.5)	94.8 (11.8)	0.0158
Median [Q1, Q3]	89.8 [83.0, 98.8]	95.1 [86.6, 102]	
sv			
Mean (SD)	52.6 (21.3)	51.4 (20.2)	0.589
Median [Q1, Q3]	46.9 [38.5, 64.1]	49.4 [35.2, 65.3]	

e I	Pre (N=100)	Post (N=100)	P-value
SVR			
Mean (SD)	1410 (456)	1490 (619)	0.131
Median [Q1, Q3]	1340 [1130, 1640]	1400 [1100, 1680]	
SBP			
Mean (SD)	133 (19.4)	144 (23.5)	< 0.001
Median [Q1, Q3]	134 [117, 146]	141 [129, 160]	
MG			
Mean (SD)	47.7 (13.5)	10.7 (4.59)	< 0.001
Median [Q1, Q3]	45.0 [40.9, 51.3]	10.0 [8.00, 13.3]	
ZVA			
Mean (SD)	4.89 (1.48)	4.19 (1.81)	< 0.001
Median [Q1, Q3]	4.70 [3.80, 5.71]	3.77 [3.11, 4.84]	

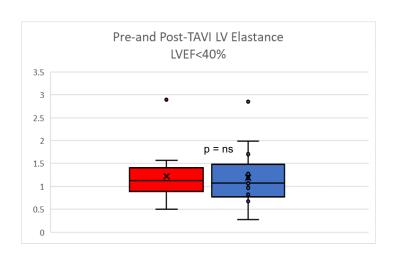
LVEF: Left ventricular ejection fraction. Ees: End-systolic elastance. Ea: Arterial elastance. MAP: Mean arterial pressure. SV: Stroke Volume. SVR: Systemic vascular resistance. SBP: sytolic blood pressure. MG: mean aortic valve gradient. ZVa: Valvulo-arterial impedance

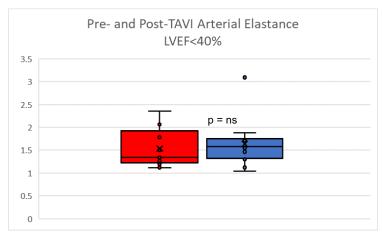

	Pre (N=100)	Post (N=100)	P-value
LVEF			
Mean (SD)	0.581 (0.138)	0.564 (0.145)	0.196
Median [Q1, Q3]	0.580 [0.501, 0.659]	0.576 [0.451, 0.676]	
Ees			
Mean (SD)	1.76 (0.674)	1.49 (0.688)	<0.001
Median [Q1, Q3]	1.66 [1.27, 2.18]	1.38 [0.933, 1.92]	
Ea			
Mean (SD)	1.65 (0.519)	1.80 (0.792)	0.0229
Median [Q1, Q3]	1.58 [1.28, 1.99]	1.70 [1.40, 1.98]	
Ea/Ees			
Mean (SD)	1.02 (0.387)	1.42 (0.810)	<0.001
Median [Q1, Q3]	0.927 [0.764, 1.24]	1.16 [0.955, 1.65]	
Cardiac Output			
Mean (SD)	5.31 (1.60)	5.47 (1.91)	0.358
Median [Q1, Q3]	4.98 [4.30, 6.31]	5.06 [4.31, 6.48]	
MAP			
Mean (SD)	91.1 (12.5)	94.8 (11.8)	0.0158
Median [Q1, Q3]	89.8 [83.0, 98.8]	95.1 [86.6, 102]	
SV			
Mean (SD)	52.6 (21.3)	51.4 (20.2)	0.589
Median [Q1, Q3]	46.9 [38.5, 64.1]	49.4 [35.2, 65.3]	

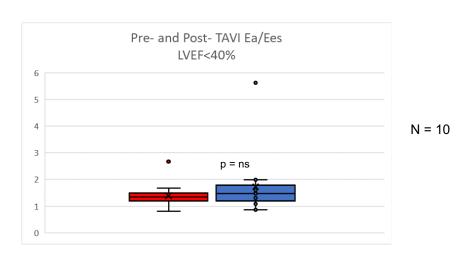
20	Pre (N=100)	Post (N-100)	P-value
SVR			
Mean (SD)	1410 (456)	1490 (619)	0.131
Median [Q1, Q3]	1340 [1130, 1640]	1400 [1100, 1680]	
SBP			
Mean (SD)	133 (19.4)	144 (23.5)	< 0.001
Median [Q1, Q3]	134 [117, 146]	141 [129, 160]	
MG			
Mean (SD)	47.7 (13.5)	10.7 (4.59)	< 0.001
Median [Q1, Q3]	45.0 [40.9, 51.3]	10.0 [8.00, 13.3]	
ZVA			
Mean (SD)	4.89 (1.48)	4.19 (1.81)	< 0.001
Median [Q1, Q3]	4.70 [3.80, 5.71]	3.77 [3.11, 4.84]	

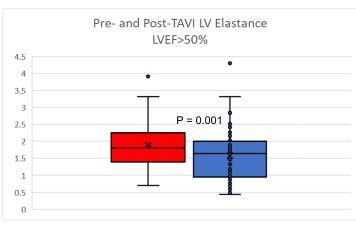

LVEF: Left ventricular ejection fraction. Ees: End-systolic elastance. Ea: Arterial elastance. MAP: Mean arterial pressure. SV: Stroke Volume. SVR: Systemic vascular resistance. SBP: sytolic blood pressure. MG: mean aortic valve gradient. ZVa: Valvulo-arterial impedance

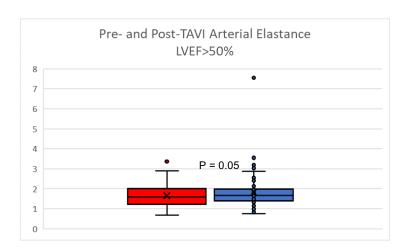
Post-TAVI Improvement in LV Contractile Function

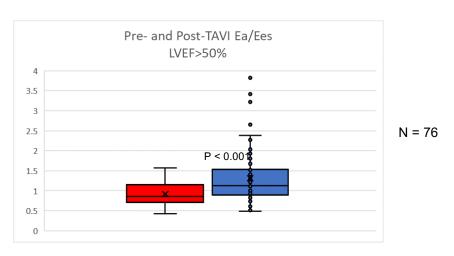

ESPVR: End-systolic pressure-volume relationship **V0:** volume-axis intercept of ESPVR (at P = 0 mmHg)




Pes: LV End-Systolic pressure




Relation of LV Ventricular Arterial Coupling to Pre-TAVI LVEF and Arterial Elastance



CONCLUSIONS

- 1) Non-invasive echocardiography was useful in demonstrating an improvement in LV contractile function following TAVI, using adjusted ESPVR and LVESV at Pes of 100 mmHg
- 2) However, LV elastance behaved differently, and decreased with an associated increase in arterial elastance leading to worsening LV-aorta coupling
 - •This suggests that higher arterial elastance adversely impacts LV elastance, highlighting the importance of optimizing BP control post TAVI
 - •Elevated systemic arterial stiffness from persistent hypertension likely tempers some of the benefit of TAVI

LIMITATIONS

- Small sample size
- Single center study
- Retrospective study

FUTURE INVESTIGATIONS

- Effect of comorbid conditions on changes in VAC and ZVa:
 - HTN
 - CAD
 - DM
 - Bundle branch block
 - Arrhythmias
 - Other valve disease
- Change in diastolic function following TAVI and its effect on VAC and Zva
- Effect of changes in Ea/Ees and Zva in clinical outcomes (rehospitalizations, mortality)

Questions?

Thanks to:

- Dr. Paul Anaya, MD, PhD Principle Investigator (Gill Heart & Vascular Institute)
- Dr. Awa Drame PGy-5, Cardiology (Gill Heart & Vascular Institute)

References

- 1. Hachicha, Zeineb, et al. "Usefulness of the Valvuloarterial Impedance to Predict Adverse Outcome in Asymptomatic Aortic Stenosis." *Journal of the American College of Cardiology*, vol. 54, no. 11, 2009, pp. 1003–1011.
- 2. Chen, Chen-Huan, et al. "Noninvasive Single-Beat Determination of Left Ventricular End-Systolic Elastance in Humans." *Journal of the American College of Cardiology*, vol. 38, no. 7, 2001, pp. 2028–2034.
- 3. ROSS, JOHN, and EUGENE BRAUNWALD. "Aortic Stenosis." Circulation, vol. 38, no. 1s5, 1968.
- 4. Huber, T.S. "Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients." *Yearbook of Surgery*, vol. 2012, 2012, pp. 395–397.
- 5. Asgar, Anita W., and Nathan Messas. "Comparison of Transcatheter Aortic Valve Implantation to Surgical Aortic Valve Replacement in Intermediate-Risk Patients." *Transcatheter Aortic Valve Implantation*, 2019, pp. 479–485.
- 6. Mack, Michael J., et al. "Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients." *New England Journal of Medicine*, vol. 380, no. 18, 2019, pp. 1695–1705.

